

The ROYAL MARSDEN

Dose Optimization: Some Case Studies

Johann de Bono MD PhD Director, Drug Development Unit, Royal Marsden Hospital and The Institute of Cancer Research

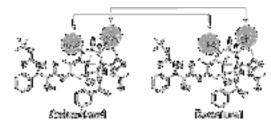
- Introduction
- Cabazitaxel
- Abiraterone
- Olaparib
- Conclusions

Introduction

- Cabazitaxel
- Abiraterone
- Olaparib
- Conclusions

Introduction

- Population drug pharmacokinetic variability arguably diminishing
 - Small molecules selected for limited CYP liabilities; development of biologics
- Cancer's complexity makes drug dose selection more challenging
 - Drug delivery to tumor cells remains a challenge
 - Disease heterogeneity, both intra-patient and inter-patient
 - Tumor cellular adaptations following treatment


Dosing recommendations remain complex

- Recommending the same drug dose to all patients for all cancer subtypes is not always rational based on what we know about cancer disease biology
- Cancer's complexity needs careful consideration:
 - Drug delivery to tumor cells remains a challenge
 - Disease hypoxia, both prior to treatment **and after treatment;**
 - High tumor hydrostatic pressures and poor blood flow to tumor
 - Dense stromal reactions limiting drug delivery eg pancreatic cancer
 - Disease heterogeneity, both intra-patient and inter-patient
 - Some tumor cells more sensitive than others (eg EGFR mutated vs EGFR amplified NSCLC)
 - Not only in tumor genomics, but also in tumor epigenetics, and tumor stroma
 - Tumor cellular adaptations following treatment
 - Direct drug target perturbations (increased expression/mutation)
 - Indirect drug target perturbations (eg myeloid cell chemoattraction post Rx activating AR via RORγ)

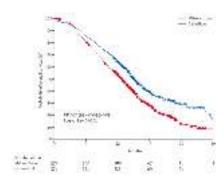
So can we really claim we can 'optimize' dosing?

- Introduction
- Cabazitaxel
- Abiraterone
- Olaparib
- Conclusions

Cabazitaxel A CYP3A4 metabolized beta-tubulin binding drug

• Some history:

- Generated to have antitumor activity against docetaxel resistant models by Rhone Poulenc
- RPR116258A evaluated in two separate Phase 1 trials in San Antonio, Texas, and a Phase 1 trial in France studying two schedules (weekly and 3-weekly)
 - Toxic dose was 25mg/m² in US study and 30mg/m² in French study (unpublished)
 - Breast cancer Phase 2 trial pursued 20 mg/m² in C1 (optional dose escalation to 25 mg/m²)
 - 345 cycles administered with a median of four cycles (range 1–25 cycles).
 - Median relative dose intensity was 0.98 (range 0.60-1.14): Some were dose escalated
 - At least one cycle delay of >3 days was observed in 32% of patients and in 14% of cycles, half of those delays being related to technical or personal reasons. At least one dose reduction was required in 10% of patients and in 2% of cycles.
- RPR then became part of Sanofi....which became part of Sanofi-Aventis
 - RPR116258A/XRP6258 (and my mCRPC randomised Phase 2 LOI) forgotten


Pivot et al, 2008; Mita et al, 2009

Cabazitaxel

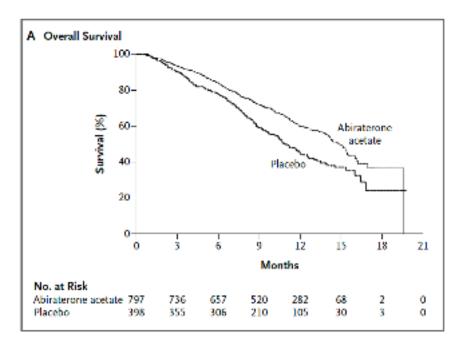
- Decade later with docetaxel coming off patent, cabazitaxel revisited
 - Taken straight to Phase 3 in the post-docetaxel space with little efficacy data
 - Dose selected for Phase 3 evaluation was 25 mg/m² q21 days
 - This improved OS and PFS but there was a significant dose reduction rate
 - FDA mandated two post-registration trials and specified their precise design
 - FIRSTANA: First line mCRPC Docetaxel 75mg/m² vs cabazitaxel 20mg/m² vs cabazitaxel 25mg/m²
 - PROSELICA: Second line mCRPC Cabazitaxel 25mg/m² vs cabazitaxel 20mg/m² (n=1200; non-inferiority)
 - FDA mandated trials:
 - Cabazitaxel is better tolerated at 20 mg/m² than at 25 mg/m²
 - Cabazitaxel has a higher response rate at 25 mg/m² then at 20 mg/m² (PSA, RECIST)
 - Non-inferiority study had broad CIs, studying whether reduced dose decreased OS by 15% or more

Table 4. Treatment Exposure and Discontinuations				and a
Treatment Factor	C20 (n = 580)*	C25 in = 595)*		AND A CONTRACT OF A DESCRIPTION OF A DESCRIPA DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION
Median No. of cycles administered per patient (range)	6.00 (1.0-11.0)	7.00 (1.0-11.0)	- I - N	10000-00100
Relative dose intensity, median (range)	0.99 (0.7-1.0)	0.98 (0.5-4.9)*	x 🔪	And A Million States and A state
Patients with = 1 dose delay and/or reduction, No. (%)	184 (31.7)	267 (44.9)	9 ^r 1	
Patients with = 1 cycle administered at reduced dose, No. (%)	59 (10.2)	129 (21.7)	•	
Reduced dose level 1	58 (10.0)	128 (21.5)		
Reduced dose level 2#	9 (1.6)	19 (3.2)		
Abbreviations: C20, cabazitaxel 20 mg/m ² plus prednisone; C25, cabazitaxel 25 "Patients who received at least one dose of cabazitaxel (safety population).	mg/m ² plus prednisone.		•	and the second se
TOne overdose led to the high maximum relative dose-intensity.			i	айд айсанй.
#The dose for one patient in each group was directly reduced to level 2.				have a set
a use one has one bager at each from year energy represed to leave a		1.1		12 PA 12 PA

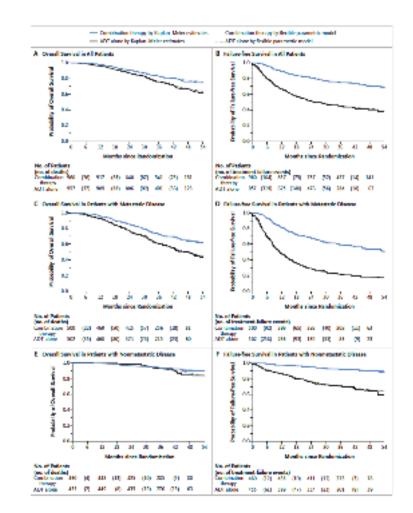
de Bono et al, Lancet 2010 Eisenberger et al, JCO 2017

Learnings

- Cabazitaxel improves outcomes
 - Lower dose better tolerated and did not decrease OS by $\geq 15\%$
 - Higher dose has more antitumor activity
 - Some patients under-dosed, some over-dosed
- Oncologists need to consider dose escalation as well as reduction


- Introduction
- Cabazitaxel
- Abiraterone
- Olaparib
- Conclusions

Abiraterone

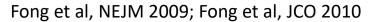

- Generated by chemists @The ICR as a CYP17 inhibitor, blocking AR signaling
- First-in-human evaluation (Phase 0 type study) confirmed target modulation
- Early clinical trials demonstrated that HRPC is a misnomer:
 - Responses seen from lowest dose level (250mgs od continuously); well tolerated
 - Highest dose achieved as 2000mgs od continuously; no dose limiting toxicity
 - Target modulation observed and durable antitumor activity at each dose level
 - PK studies identified moderately high PK variability
 - Food decreased PK variability and increased bioavailability multi-fold

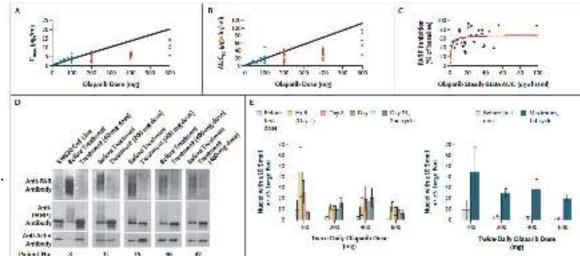
Phase 3 trials conducted fasted at 1000mgs/day

Abiraterone

OS benefit in late stage post-chemo mCRPC, pre-chemo mCRPC and at HSPC (from diagnosis)

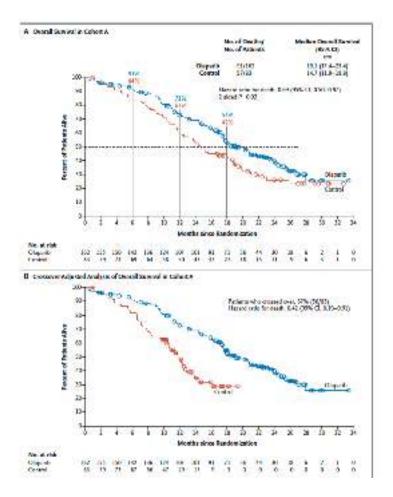
de Bono et al, NEJM 2011; James, de Bono et al NEJM 2017


Learnings


- Abiraterone is arguably one of the most impactful drugs developed for PC to date
 - It is very well tolerated, but has early and late toxicities (many steroid related)
 - Early toxicities largely abrogated by contemporaneous low dose steroids
 - But dexamethasone 0.5mgs/day probably a better steroid than prednisolone 5mgs bid
 - Patients progressing on abi + pred often respond to abi + dex
 - Lower doses can be given with food (eg 250mgs/day), but would that improve outcomes?
 - Probably not although it will reduce PK variability, wastage, and possibly (?) some toxicities

- Introduction
- Cabazitaxel
- Abiraterone
- Olaparib
- Conclusions

Olaparib (capsules)


- PARPi generated by Kudos Pharm (Cambridge, UK), Biotech founded by Prof Stephen Jackson
- Synthetic lethal interaction between PARPi and BRCA loss of function demonstrated by two laboratories in 2005 (Ashworth and Helleday labs)
- First-in-human clinical trial of single agent Olaparib (KU-0059436; AZD2281) demonstrated proofof-mechanism and proof-of concept:
 - Twice daily continuous dosing (capsules)
 - Anaemia was dose-limiting
 - Inhibition of parylation from lower doses
 - Induction of gH2Ax foci from lower doses
- But clear dose-response relationship
 - Higher doses more active in BRCA tumors
 - 4-fold increase in response rate from 100mgs bid to 400mgs bid; highest dose most active...

Olaparib (tablets)

- Olaparib tablets (300mg bid developed)
- Olaparib improves OS in Cohort A (PROfound)
 - BRCA/ATM loss (biallelic loss required for activity)
- Olaparib also has antitumor activity against some other genomic subtypes
 - Eg PALB2 altered, FANCA altered
- Not all genes created equal for synthetic lethality
 - BRCA2>ATM
- Other MOA muted but not proven in trials
 - Eg AR blockade inhibition

de Bono et al, NEJM 2021; Hussain et al, NEJM 2021

Learnings

- Olaparib has anti-tumor activity against cancers with DNA repair defects, especially tumors with genomic BRCA2 HOMDEL
 - HOMDEL>mutation (but biallelic loss necessary for activity)
 - BRCA2 and PALB2>ATM
 - Improves OS in multiple cancers including ovarian, prostate
- Olaparib Phase 1 trials demonstrated a clear dose-response relationship
 - Hematological toxicity (anemia, thrombocytopenia) limited continuous higher dose administration; discontinuous dosing (rather than dose reductions) appears to still have significant PARPi antitumor activity (niraparib data; Sandhu et al 2013)
- PARP1 selective inhibitors now in development
 - May have less hematological tox and therefore muted to be more active

Sandhu et al, Lancet Oncology 2013

- Introduction
- Cabazitaxel
- Abiraterone
- Olaparib
- Conclusions

Conclusions

- 'Optimal' drug dosing to cancer patient population remains a complex challenge
- Higher doses often have more antitumor activity but more toxicity
- The 'optimal' dose and schedule may vary
 - From patient to patient
 - From site to site in same patient
 - Over time as treatment induces cancer adaptations (eg increased AR expression with ARi)
 - Between different diseases, or differing disease subtypes for same disease
- Optimizing dose and schedule needs to remain a major consideration beyond first-in-human clinical trials