Histology independent drug development – is this the future for cancer drugs?

Trial Design – Basket or Umbrella for Optimal Progress: Academic Perspective

BIRMING

Lucinda Billingham Professor of Biostatistics and Director of Biostatistics Cancer Research UK Clinical Trials Unit University of Birmingham

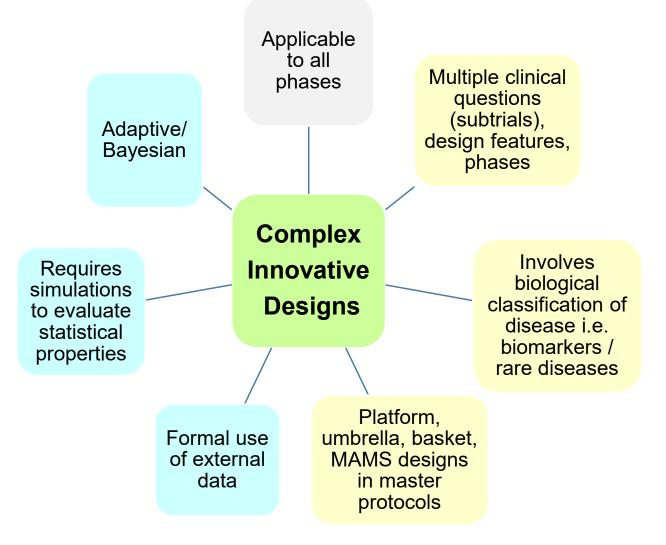
> CANCER RESEARCH

Terminology: Complex Innovative Design (CID)

BJC British Journal of Cancer

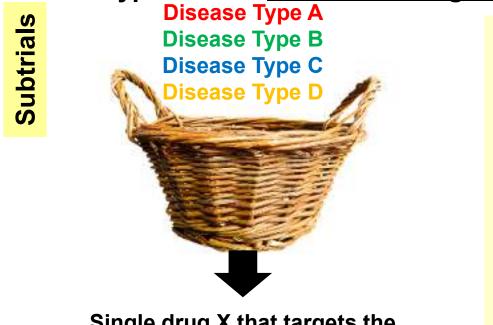
www.nature.com/bjc

CONSENSUS STATEMENT


Effective delivery of Complex Innovative Design (CID) cancer trials—A consensus statement

Sarah P. Blagden¹, Lucinda Billingham², Louise C. Brown³, Sean W. Buckland⁴, Alison M. Cooper⁵, Stephanie Ellis⁶, Wendy Fisher⁷, Helen Hughes⁸, Debbie A. Keatley⁹, Francois M. Maignen¹⁰, Alex Morozov¹¹, Will Navaie⁶, Sarah Pearson¹², Abeer Shaaban¹³, Kirsty Wydenbach¹⁴, Pamela R. Kearns^{2,15}, on behalf of the Experimental Cancer Medicine Centres (ECMC) CID trials working group

The traditional cancer drug development pathway is increasingly being superseded by trials that address multiple clinical questions. These are collectively termed Complex Innovative Design (CID) trials. CID trials not only assess the safety and toxicity of novel anticancer medicines but also their efficacy in biomarker-selected patients, specific cancer cohorts or in combination with other agents. They can be adapted to include new cohorts and test additional agents within a single protocol. Whilst CID trials can speed up the traditional route to drug licencing, they can be challenging to design, conduct and interpret. The Experimental Cancer Medicine Centres (ECMC) network, funded by the National Institute for Health Research (NIHR), Cancer Research UK (CRUK) and the Health Boards of Wales, Northern Ireland and Scotland, formed a working group with relevant stakeholders from clinical trials units, the pharmaceutical industry, funding bodies, regulators and patients to identify the main challenges of CID trials. The working group generated ten consensus recommendations. These aim to improve the conduct, quality and acceptability of oncology CID trials in clinical research and, importantly, to expedite the process by which effective treatments can reach cancer patients.


British Journal of Cancer https://doi.org/10.1038/s41416-019-0653-9

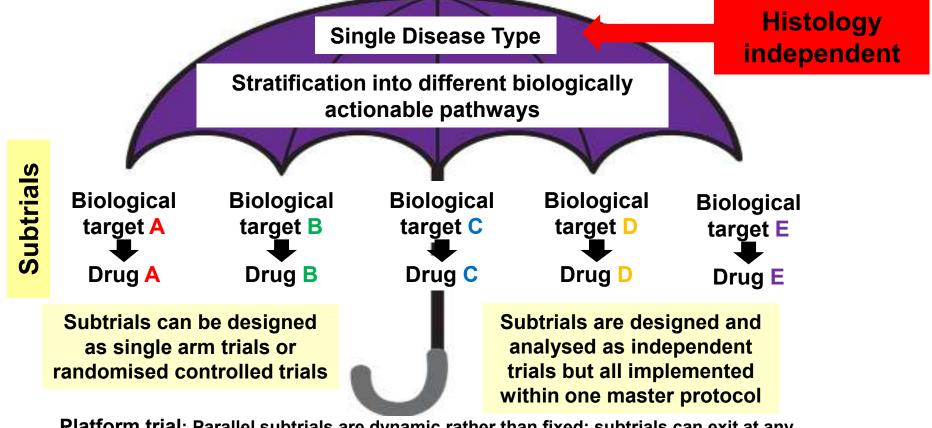
Basket and Umbrella Trials: Types of CID

Basket Trials: <u>Key Design</u> for Histology-Independent Drug Evaluation

Multiple disease types with a <u>common biological driver</u>

Single <u>drug X</u> that targets the common biological driver

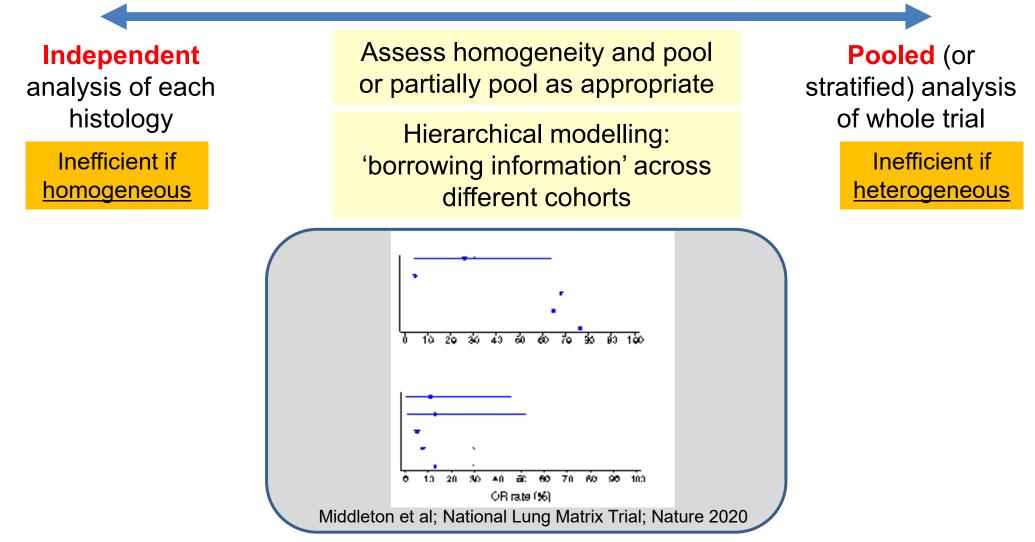
Generally nonrandomised single arm designs


Often in advanced disease

Often aim to extend indications for drugs already proven beneficial

Platform trial: Parallel subtrials are dynamic rather than fixed; subtrials can exit at any time due to futility or completion; new subtrials can enter at any time

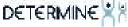
MASTER PROTOCOL


Umbrella Trials: <u>Could be Applicable</u> for Histology-Independent Setting if Multiple Biological Targets

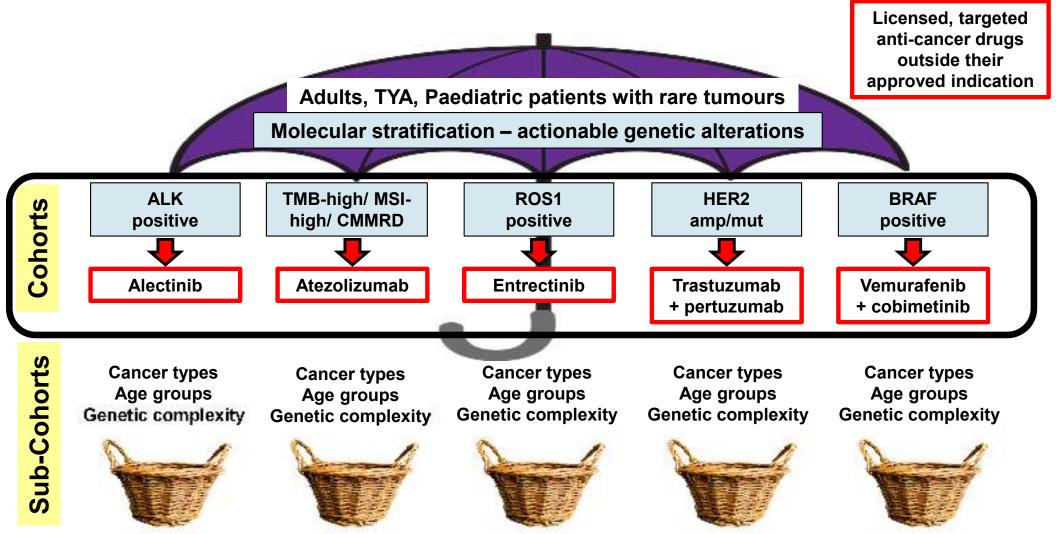
Platform trial: Parallel subtrials are dynamic rather than fixed; subtrials can exit at any time due to futility or completion; new subtrials can enter at any time

MASTER PROTOCOL

Challenges of Planning Basket Trial Analysis



DETERMINE – a collaborative effort


(a<u>D</u>vancing <u>gEnomically maTchEd</u> t<u>R</u>eat<u>M</u>ents <u>IN</u> rare canc<u>E</u>rs)

The DETERMINE team is comprised of multiple experienced clinicians and researchers that will be working closely with CRUK and its various partner organisations

DETERMINE: Umbrella-Basket Platform Trial

DETERMINE: Statistical Design for <u>Whole Cohort</u> in Each Treatment Arm : Single Arm Phase III

Statistics in Medicine

Research Article

Received 5 December 2016,

Accepted 22 April 2017 Published online 7 June 2017 in Wiley Online Library

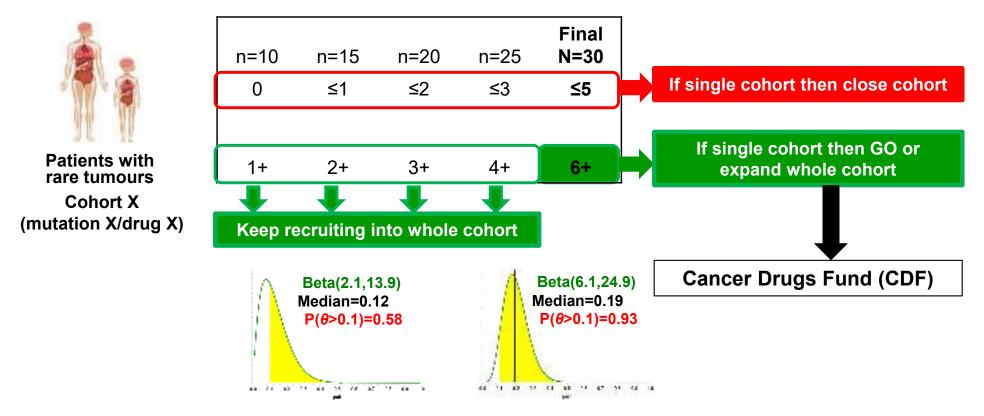
(wileyonlinelibrary.com) DOI: 10.1002/sim.7338

BOP2: Bayesian optimal design for phase II clinical trials with simple and complex endpoints

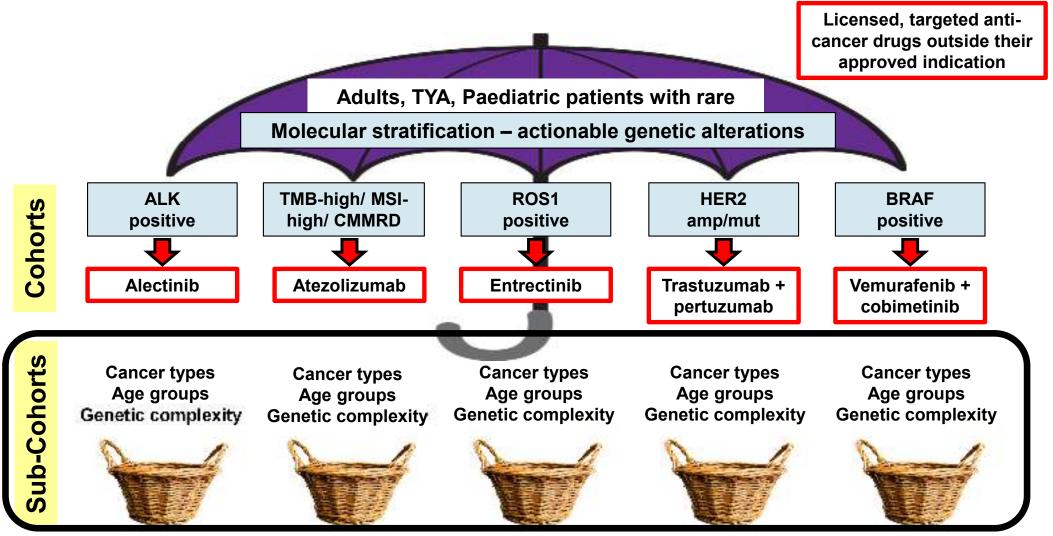
Heng Zhou, J. Jack Lee and Ying Yuan*

Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, U.S.A. *Correspondence to: Ying Yuan, Department of Biostatistics, The University of Texas MD Anderson Cancer Center Houston, TX 77030, U.S.A.

*E-mail: yyaan@mdanderson.org

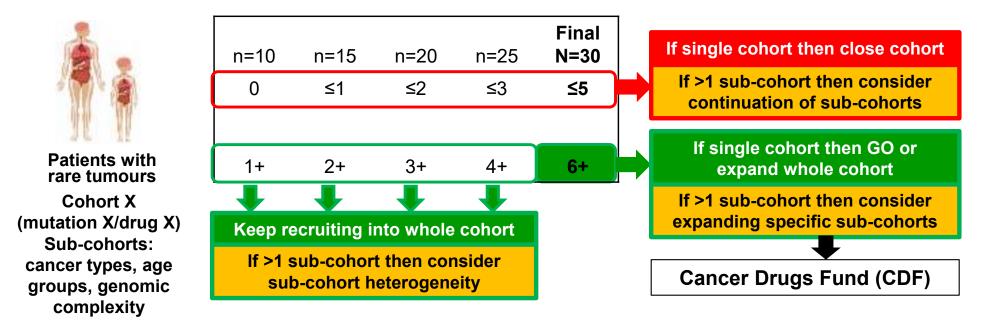

DCB: durable clinical benefit – absence of disease progression for at least 24 weeks

- Co-primary outcomes: **OR / DCB**
- Level below which treatment is unacceptable = 10%
- Level at which we want trial to have a high chance of correctly claiming that the treatment is acceptable = 30%
- Prior: Beta (0.1, 0.9)
- Type I error rate = 0.1 (one-sided)
- Final analysis at: N=30
- Interims at: N=10,15,20,25
- Beta-binomial conjugate analysis
- BOP2 design gives power 0.89


DETERMINE: Decision-Making for <u>Whole Cohorts</u> at Interim and Final Analyses

BOP2 Design: Bayesian-adaptive approach

Guidelines for decision-making based on number of observed OR / DCB


DETERMINE: Umbrella-Basket Platform Trial

DETERMINE: Decision-Making on Whole Cohorts and Sub-Cohorts at Interim and Final Analyses

BOP2 Design: Bayesian-adaptive approach

Guidelines for decision-making based on number of observed OR / DCB

Sub-cohort decisions:

Predicted Probability of Success (PPoS) = p (GO decision at N=30 | current data, prior)

Exploring Sub-Cohorts at Interim Analysis: Example

	Cohort X	Sub-Cohort X1	SubCohort X2
N	10	N/A	N/A
OR	1	N/A	N/A
Cohort Decision	GO	N/A	N/A
Sub-Cohort Decision		N/A	N/A
N	15	10	5
OR	4	0	4
Cohort Decision	GO		
PPoS		0.0025	0.9993
Sub-Cohort Decision		STOP	GO

* Note: if design had used critical threshold > 10% then cohort X would have terminated at N=10, missing opportunity to discover benefit in X2

Exploring Sub-Cohorts at Final Analysis: Example

	Cohort Y	Sub-Cohort Y1	Sub-Cohort Y2
N	30	20	10
OR	6	2	4
Cohort Decision	GO		
PPoS		0.035	0.972
Sub-Cohort Decision		STOP	GO
			Keep

recruiting?

Exploring Sub-Cohorts at Final Analysis: Example

	Cohort Z	Sub-Cohort Z1	Sub-Cohort Z2
Ν	30	20	10
OR	16	8	8
Cohort Decision	GO		
PPoS		1	1
Sub-Cohort Decision		GO	GO
	Cancer		

Drugs

Fund

Conclusions and Final Thoughts for Discussion

- Basket trial designs allow histology-independent evaluation of drugs (may also involve an umbrella trial design)
- Bayesian approaches will give greatest level of flexibility for adaptive designs and maximise the utility of the data
- Need to decide a priori on statistical analysis plan:
 - Pooled / stratified analysis of whole basket
 - Analysis of each sub-cohort within the basket independent or borrowing information
 - Borrowing information may not always be straightforward
- Sub-cohort analysis in DETERMINE is difficult to plan
 - Unknown number, prevalence and recruitment rate for sub-cohorts
 - Decisions based on co-primary outcome measures.