

Exploring the use of ctDNA for Monitoring Treatment Response:

The Friends of Cancer Research ctMoniTR Project

Jeff Allen, PhD President & CEO

Potential applications of ctDNA assays and regulatory considerations

LOW BURDEN OF DISEASE• Differentiate normal/ pathogenic in healthy people• Detection of prognostic biomarkers to reliably identify high risk patients• Detection residual ctDNA that is specific to tumor• Follow levels of ctDNA over time that correlate with early PD prior to detection by traditional imaging modalities• Concordance ctDNA levels with increasing burden of disease• High BUR BUR DISEImage: Dise of the context of the context of the context of origin to detect on of tumor DNA• Detection of targetable variants if tissue limited/difficult to access• Detection of targetable variants if to access• Potential to correlate with long term outcome• Monitoring clinical trials• Monitoring clinical trials• Monitoring clinical trials• Monitoring clinical trials• Monitoring clinical trialsImage: Dise of the context of the c		Early Detection/ Screening	Molecular Profiling/ Prognostication	Residual Disease Detection	Assess Response	Monitoring tumor evolution	
tumors outcome	LOW BURDEN OF DISEASE	 Differentiate normal/ pathogenic in healthy people Detection thresholds must be sensitive to find low levels of tumor DNA Identify tumor of origin Detect favorable tumors with more benign course from aggressive tumors 	 Detection of prognostic biomarkers to reliably identify high risk patients Detection of targetable variants if tissue limited/difficult to access 	 Detect low amount of residual ctDNA that is specific to tumor Enrichment clinical trials Potential to correlate with long term outcome 	 Follow levels of ctDNA over time that correlate with early PD prior to detection by traditional imaging modalities Consider qualitative or quantitative assays Potential to correlate with long term outcome 	 Concordance ctDNA levels with increasing burden of disease Monitoring clonal evolution for drug targets 	HIGH BURDEN O DISEASE

Adapted from Narayan et al., Oncologist 2020

ctDNA as a monitoring tool for early treatment response

- Vse of ctDNA to monitor response provides new opportunities and a timely area of investigation
 - Rapid turn-around time, less-invasive method
 - Allow for earlier identification of response support for go/no-go decisions, patient selection, regulatory use as an intermediate/surrogate endpoint

Challenges

- Variability in the way ctDNA assessment has been designed into clinical trials
- Different collection methods
- Difference on how ctDNA changes are reported by different ctDNA assays
- What evidence needs to be established to answer the question:

Do changes in ctDNA levels accurately reflect the therapeutic effect of cancer therapies?

ctMoniTR Project Step 1 Objectives and Milestones

GRAB NMD9

- Investigate the feasibility of harmonizing ctDNA data measured from different assays using different collection schedules
- 2. Align on a methodology to combine clinical data from multiple trials in lung cancer
- 3. Characterize associations between ctDNA values and tumor response

Can trends observed in smaller independent datasets be replicated in a larger combined dataset?

ctMoniTR Project

Workflow	Step 1	Step 2	Early-Stage Disease
Goals	 Aligned on a methodology to combine data from multiple trials in lung cancer Harmonized ctDNA data measured from different assays using different collection schedules Manuscript forthcoming 	 Update Step 1 methodology for combining data to account for additional treatment settings and tumor types Harmonize ctDNA data from various uniformly collected datasets Validate Step 1 findings 	 Identify and prioritize clinical questions supporting use of ctDNA as an early endpoint to support regulatory approval Define areas of needed data alignment to combine data from multiple clinical trials
Approach	 Advanced stage NSCLC treated with PD-(L)1 inhibitors Previously collected data from clinical trial and observational cohort studies 	 Advanced solid tumors treated with PD-(L)1 inhibitors or TKI Previously collected data from clinical trial and observational cohort studies 	 Next Steps: Inventory of data availability in solid tumors Previously collected data from clinical trial and observational cohort studies

ctMoniTR Step 1 Project Participants

- Carl Barrett
- Phillip Dennis
- Todd Hembrough
- Rachel Hodge
- Darren Hodgson
- Michael Kuziora
- Carmen Lee
- Ganesh Mugundu
- Philip Overend
- Antony (Tony) Sabin
- Margi Sheth
- Lingmin Zeng

CINE

- Elsa Anagnostou
- Gary Rosner
- Rob Scharpf
- James White

- Jonathan Baden
- Han Chang
- Julie Dixon
- Joseph Fiore
- George Green
- Anthony Jarkowski
- Salil Patel
- Mark Sausen
- Aurora Seminara
- Chris Ward
- Nancy Zhang

- Scot Ebbinghaus
- Julie Kobie
- Carol Pena
- Eric Rubin
- Alex Snyder

- FOUNDATION MEDICINE.
- David Fabrizio
- Meijuan Li
- Amanda Young

- Ken Nesmith
- Neil Peterman
- Ted Snelgrove
- Avse Tezcan
- Haluk Tezcan

- Aadel Chaudhuri (WUSTL)
- Dan Klass
- Alex Lovejoy
- Maximilian Schmid

GRAIL

Nathan Hunkapiller

Genentech

A Member of the Roche Group

FRIENDS

of CANCER

RESEARCH

- Ellie Guardino
- See Phan
- David Raben
- David Shames
- Kathleen Winson
- Qi Xia

- Charu Aggarwal
- Taylor Black
- Erica Carpenter

- Darva Chudova
- Elena Helman
- Katie Quinn

Diana Merino Vega

Hillary Stires

- Julia Beaver Soma Ghosh
- Gene Pennello
- Reena Philip
- Wendy Rubinstein
- Shenghui Tang
- Xiaogin Xiong

Nevine Zariffa

- Antje Hoering
- Katie Nishimura
- Vanessa Cilento
- Adam Rosenthal
- Matt Scott

Analysis Dataset

ctMoniTR Final Analysis Dataset Total n=200

Study population:

- Available data (previously published, already collected)
- Patients with advanced NSCLC
- Treated with anti-PD-(L)1 therapy (plus control arm, if Randomized Controlled Trial "RCT")
- Must have tumor response evaluation, and OS/PFS data
- ctDNA measurements (VAF) at baseline, plus
 1 or more follow-up samples

ctMoniTR Project Step 1 Objectives and Milestones

Study population:

- Available data (previously published, already collected, individual level)
- Patients with advanced NSCLC
- Treated with anti-PD-(L)1 therapy (plus control arm, if trial was randomized)
- Must have tumor response evaluation, and OS/PFS data
- ctDNA measurements (VAF) at baseline, plus 1 or more follow-up samples

Can trends observed in smaller independent datasets be replicated in a larger combined dataset? Timing of Tumor Response and ctDNA Samples in the Pooled Dataset of Patients With Anti-PD-(L)1 treated NSCLC

Robust Association Observed Between Strong Decreases in ctDNA and Patient Survival

Years from 70 Days from Start of Therapy

Log-rank Pairwise p-value	Decrease	Intermediate	Increase
Decrease	-		
Intermediate	0.001	-	
Increase	<0.001	0.426	-

Survival Outcomes (3-Level)

Kaplan-Meier Curves

Log-rank Pairwise p-value	Decrease	Intermediate	Increase
Decrease	-		
Intermediate	<0.001	-	
Increase	<0.001	0.014	-

*Note: patients with progression within 70 days were excluded from the PFS plots.

ctMoniTR Step 2 Project Overview

Objectives:

- Determine how long after treatment initiation can we detect an association between changes in ctDNA and clinical response
- Explore the extent to which ctDNA can complement RECIST
- Characterize whether changes in ctDNA are a prognostic indicator
- Examine ctDNA as a potential drug development tool or intermediate endpoint

Provides an opportunity for generalizability but also represents a challenge in terms of complexity

ctMoniTR Project Timeline

Acknowledgements

AstraZeneca

- Bayer
- Biodesix
- Boehringer Ingelheim
- Bristol Myers Squibb Company
- Cancer Research And Biostatistics (CRAB)
- EMD Serono, Inc.
- US Food and Drug Administration (FDA)
- Foundation Medicine, Inc.
- Genentech, Inc.
- Guardant Health, Inc.
- Illumina, Inc.
- Johns Hopkins University

Friends of Cancer Research:

- Hillary Stires
- Brittany Avin McKelvey
- Grace Collins
- Mark Stewart
- Lilly Oncology
- Merck & Co. Inc.
- Molecular Characterization Laboratory at Frederick National Laboratory,
- Memorial Sloan Kettering Cancer Center
- Natera, Inc.
- MD Group LLC.
- Novartis AG,
- Pfizer, Inc.,
- Princess Margaret Cancer Centre
- Regeneron Pharmaceuticals Inc.
- Resolution Bioscience, Inc.
- 📕 Takeda Pharmaceutical Company

