

CDDF WORKSHOP

YBRID WORKSHOP

Measurable Residual Disease (MRD) and Circulating Tumour Nucleotides (ct DNA) in cancer drug development

ctDNA and MRD, an academic point of view

Marie Morfouace, Ph.D EORTC

Disclaimer

• No conflict of interest

3

Circulating biomarkers in the clinic



Liquid biomarkers in the clinic: successes and challenges

MRD: Concept develop in liquid tumor

How to translate it to solid tumors? What circulating biomarkers to use?

Example of prostate cancer and PSA: routine use of biochemical recurrence (BCR) to screen patients, and monitor relapse after radical prostatectomy or RT+ hormono-therapy

Liquid biomarkers in the clinic: successes and challenges

Example of ovarian cancer and CA125

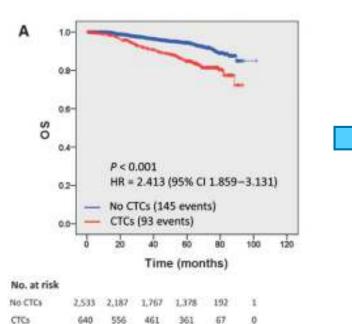

Table 1. The ability of serum CA 125 to predict early progression in 124 patients by using only one rising value from ≤ 40 U/ml to ≥ 60 U/ml, and from ≤ 40 U/ml to ≥ 100 U/ml.

	l value ≥60 U/ml	1 value >100 U/ml
True positive (TP)	58 (+5*) = 73	60 (+4*) - 64
False positive (FP)	7 (+5*) = 2	4 (-4*) = 0
True negative (TN)	44	46
False negative (FN)	5	14
Sensitivity (SE)	93.2%-93.6%	81.1%-82.1%
specificity (SP)	86.3%-95.7%)	92.0%-100%
Positive predictive value (PP) Negative predictive value	7) 90.7%-97.3%)	93.8%-100%
(NPV)	89.8%	76.7%
Median lead-time*	-63 days	-31.5 days
(range)	(-350 to +77)	(-245 to +105)

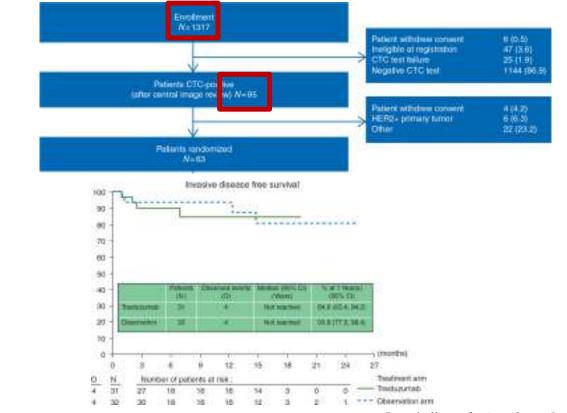
Rustin et al., Annals of Oncol, 1996

Change in CA125 is not predictive of OS Issue with lead time?

Randomisation when CA125 concentration increased to twice the site upper limit of normal



Rustin et al., Lancet, 2010



Liquid biomarkers in the clinic: successes and challenges

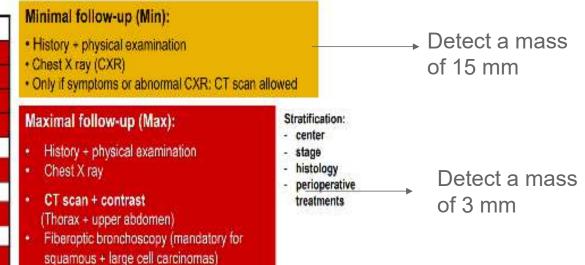
are: are can a

Janni et al., CCR, 2016

Ignatiadis et al., Annals on Oncol 2018

7

Considerations for implementing ctDNA in clinical care


ctDNA and clinical utility

IFCT-0302: randomized trial on follow-up of resected NSCLC patients (Westeel et al., ESMO, 2017)

Months	Min	Max
6	CXR	Chest CT
12	CXR	Chest CT
18	CXR	Chest CT
24	CXR	Chest CT
30		
36	CXR	Chest CT
42		
48	CXR	Chest CT
54		
60	CXR	Chest CT

IFCT-0302: randomized trial on follow-up of resected NSCLC patients (early stage)

3.8

Treatment: chemotherapy

p=0.37 1.1 1.7 1.4 11 SC 14 1.1 10 8.2 ٠ -120 ** the i Tené (months). Numinal Surveillance - Mainal Screduce 52 Maximal Scruellator -- 583 214 634 360 175 Minimal Savenharezt - 885 131 815 370 1029 54

123.6 mg [100.9-NR]

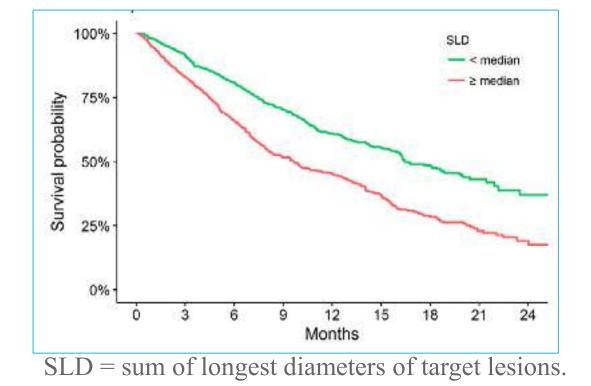
99.7 mo [89.1-115.5]

Westeel et al., ESMO, 2017

No benefit from early chemotherapy treatment start on OS

Impact of initiation of treatment and baseline tumor size?

IO efficacy and tumor burden evaluated through RECIST target size (metastatic patients).


Meta-analysis from

- OAK (NCT02008227, July 7, 2016 data cutoff),
- POPLAR (NCT01903993, May 8, 2015 data cutoff),
- BIRCH (NCT02031458, May 28, 2015 data cutoff)
- FIR (NCT01846416, January 7, 2015 data cutoff).

All analyses were based upon patients with NSCLC who received atezolizumab treatment.

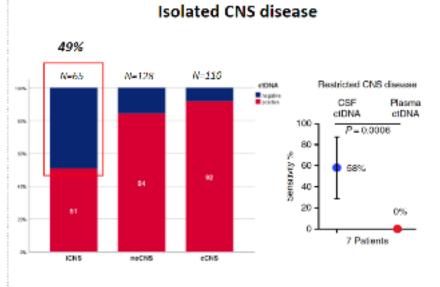
N=1461 pts

Baseline SLD is an independent predictor of survival outcomes

Hopkins Semin Oncol 2019

Considerations for implementing ctDNA in clinical care

Pattern of relapse

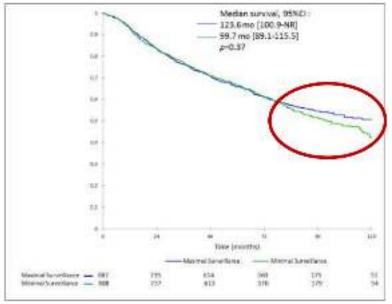

Patterns of relapse and limit of ctDNA assays

Would ctDNA bring the same value in detecting relapse in different cancers?

- NSCLC: around 50% risk of relapse after radical treatment (IMpower-31)
 - 40% local relapse
 - 40% distant metastasis
 - 20% both
- CRC: 38.1% risk of relapse after surgery (at 27.6 months, Mejri et al., Clin Trans Oncol, 2017)
 - 23.8% local relapse
 - 69.8% distant metastasis
 - 6.4% both
- Locally advanced HNSCC: around 50% risk of relapse after radical treatment
 - 40% local relapse
 - 60% local relapse and distant metastasis

EORTC

What about brain metastasis?


Aldea et al, J Thorac Oncol 2019

De Mattos-Arruda, Nature Comm 2015

Limited detection rate for patients with brain metastasis

The issue of second primary malignancies

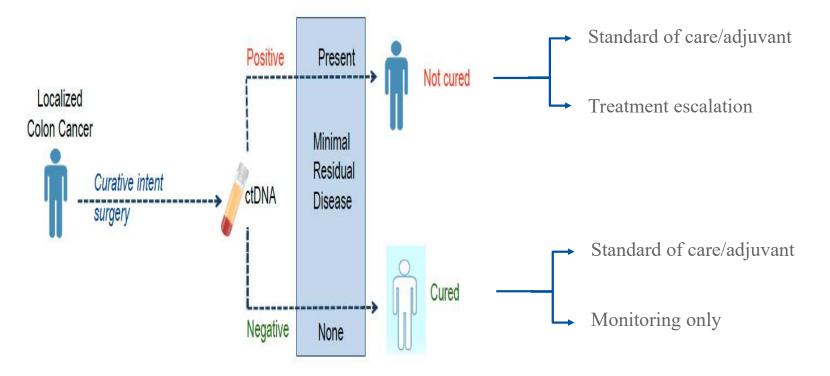
Westeel et al., ESMO, 2017

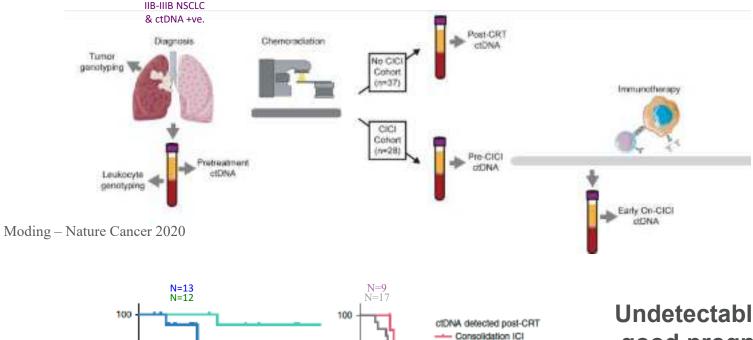
utri el sixonza:

After 2 yrs: benefits from CT scan for early detection of second primary malignancies

Personalized ctDNA assays: efficacy after 2 yrs in lung cancer? Sensitivity regarding detection of new primary malignancies?

Considerations for implementing ctDNA in clinical care


ctDNA for treatment escalation/de-escalation


ctDNA positivity to select patients for adjuvant therapy?

• Design currently proposed for several trials (mainly CRC cohorts):

ctDNA positivity to select patients for adjuvant therapy?

50

0

n

6

P = 0.23

24

— No consolidation ICI

18

12

P = 0.04

24

tá ustviet ábonza,

50

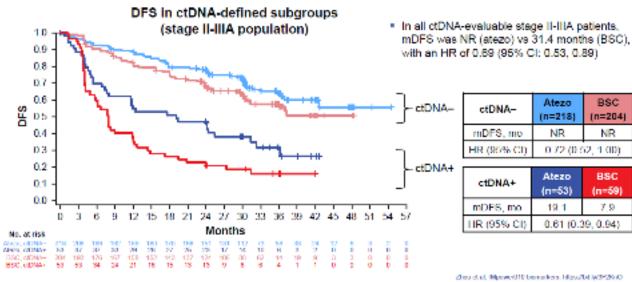
0

0

6

ctDNA not detected post-CRT

18


Consolidation ICI No consolidation ICI

12

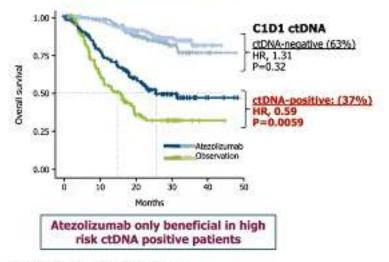
Undetectable ctDNA post-CTRT good prognosis regardless ICI Clear benefit for ctDNA positive population from ICI maintenance Limited sample size

ctDNA as a stratification factor – **IMpower10 trial**

A	ctDNA-	Atezo (n=218)	BSC (n=204)
	mDFS, mo	NR	NR
	HR (95% CI)	0.72 (0.52, 1.00)	
	· · · · · ·		
A+	. ,		
A+	ctDNA+	Atezo (n=53)	BSC (n=59)
A+	ctDNA+ mDFS, mo		BSC

Subgroup analysis:

- Impact on ctDNA+ population (HR=0.61)
- But also effect on ctDNA-_ population (HR=0.72)


Clinical cutoff, 21 January 2021, Unstratified HRs are shown.

Zhou et al. Maxwell 10 bierrarkers. Mesu/ful W3P2N (C Content of this presentation is sopyright and responsibility of the author. Remainsion is required for reliase 9. ctDNA as a stratification factor – IMvigor010 trial

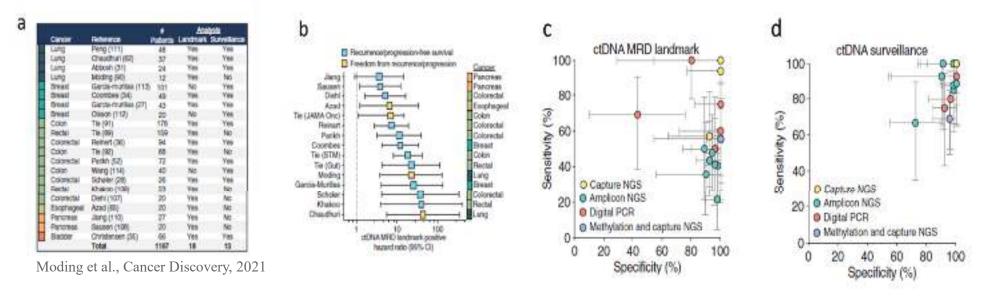
IMvigor010 data in Bladder Cancer: Adjuvant Atezolizumab vs Observation

ctDNA Exploratory Analysis

Prognostic Enrichment

ESMO-JO, Dec 2020; Powles et al. Nature, 2021.

Subgroup analysis:


- Impact on ctDNA+ population (HR=0.59)
- No effect on ctDNApopulation (HR=1.31)

Single timepoint vs longitunal monitoring of ctDNA

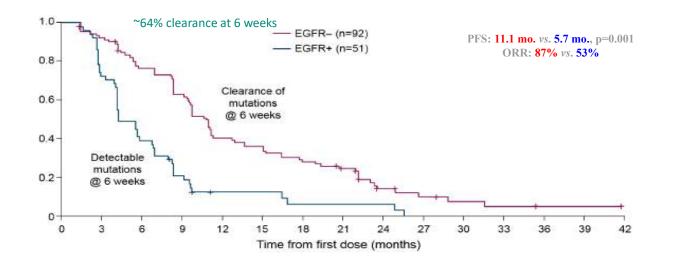
• Monitoring ctDNA instead of a single timepoint?

sé uarrier divenza

• Entry in clinical trial upon ctDNA positivity?

Considerations for implementing ctDNA in clinical care

ctDNA to monitor treatment efficacy/early endpoint

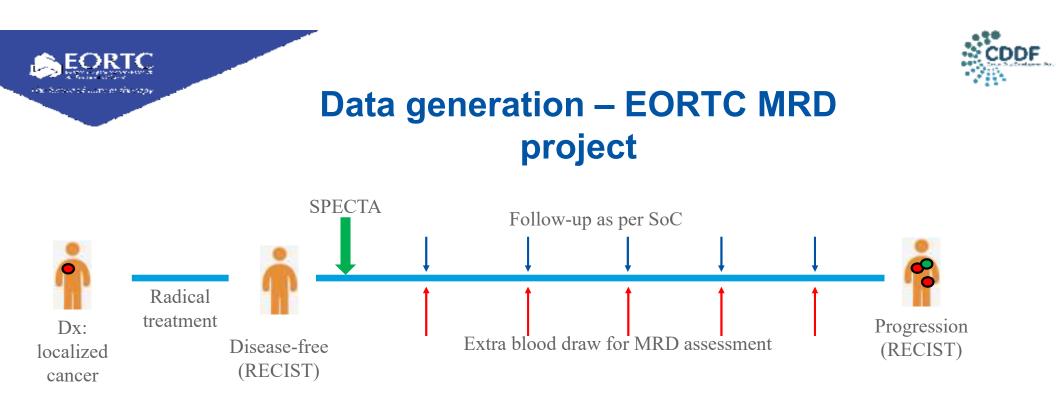


ctDNA clearance as an early endpoint

Monitoring of response or detecting early resistance to TKI

AURA

Osimertinib in NSCLC patients progressing on TKI


Thress - ASCO 2017

EORTC

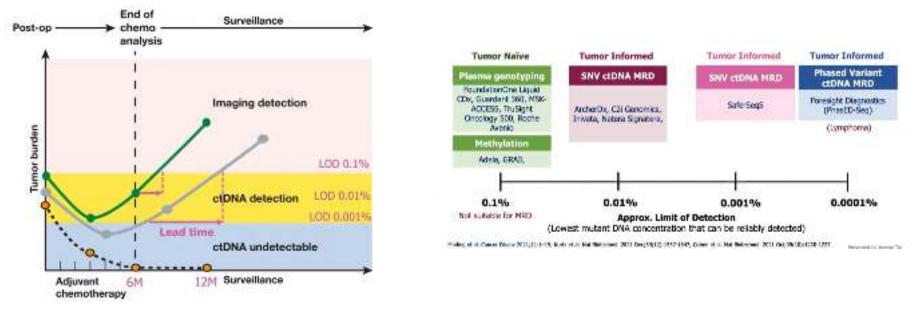
Open questions

- How to integrate with response criteria?
 - As an additional test to integrate into the ruleset? E.g. as date of PD to be confirmed by imaging?
 - As a new endpoint for RECIST? Next to RR, PFS, etc. Similar to pCR?
 - Other options?
- ctDNA and MRD detection
 - Prognostic value of ctDNA positivity at a single time point for risk of recurrence
 - Surrogate marker for treatment efficacy (ctDNA clearance associated with response)
 - Clinical utility: to be demonstrated
- Limitations
 - Variability within tumor types (shedding, patterns of relapse, etc)
 - LOD
 - Would the impact be similar for all treatments?
- For a clinician:
 - how to interpret ctDNA positivity?
 - Perform additional imaging?
 - Start of a new line of treatment?
 - How to inform the patient?
 - What will be the effect on patient quality of life?

Primary endpoint: PPV

Secondary endpoints: NPV and lead time

Cohorts: NSCLC, melanoma, HNSCC, TNBC, HER2-positive BC, Prostate, RCC and rare cancers (HPV-positive HNSCC, pancreatic cancer, etc.) MRD assay: under discussion (personalised assay, methylation, etc)



Thank you

SEORTC

The importance of LOD and assay selection

Jeanne Tie, AACR, 2022