CDDF WORKSHOP

Measurable Residual Diseese (MRD) and Circulating Tumour Nucleotides (ct DNA In cancer drug development

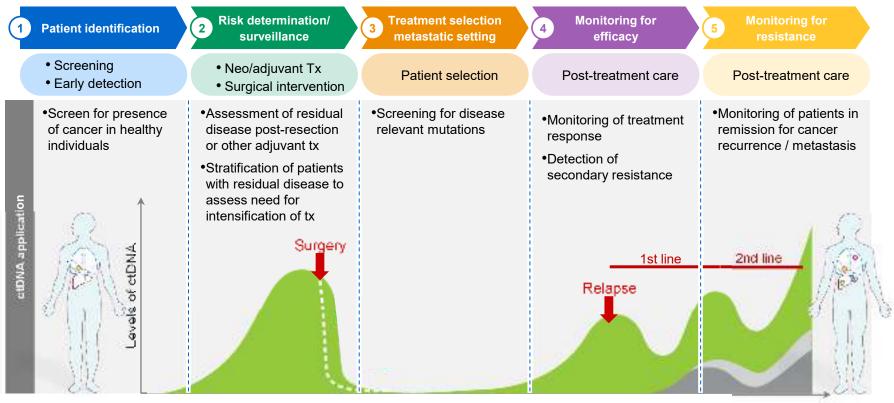
Current Status and Clinical Application of Circulating Tumour DNA (ctDNA) and its Future Role in Clinical Practice

Jürgen E. Gschwend, Professor and Chairman Department of Urology, Technical University of Munich, Germany

CDDF WORKSHOP

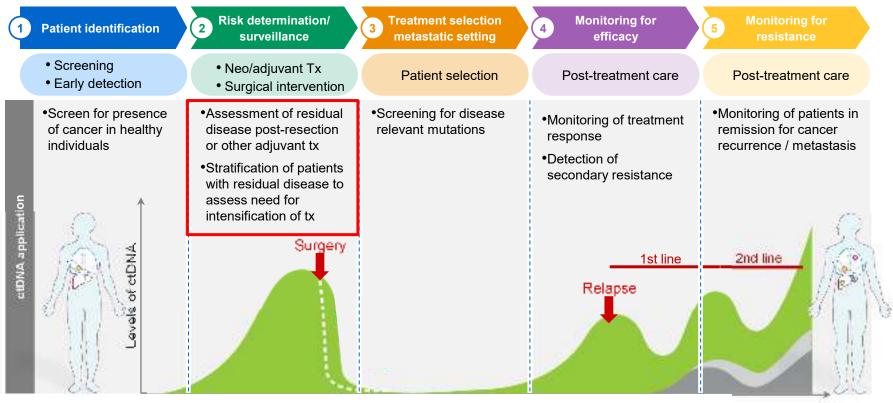
CDDF

Measurable Residual Disease (MRD) and Circulating Tumour Nucleatides (ct DNA) In cancer drug development


Disclaimer

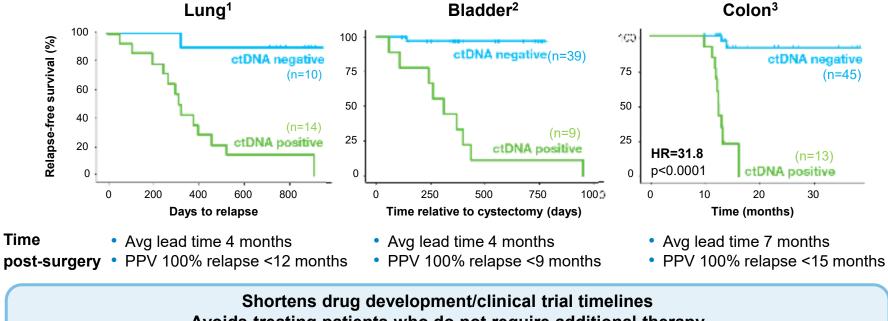
Lectures: Amgen, Bayer, BMS, Janssen, Merck, MSD, Roche

Consultancy: Bayer, BMS, Janssen, Merck, MSD, Pfizer, Roche


ctDNA has substantial potential to be used throughout the patient journey

This is a non-promotional meeting intended for HCPs outside the USA. It may include scientific information about investigational compounds that may not be approved or valid in your jurisdiction

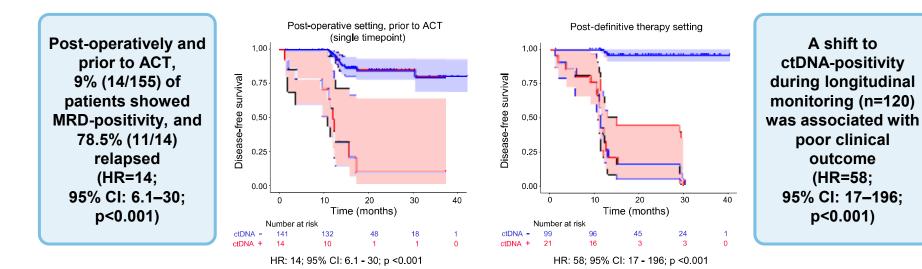
Time Adapted from Wan et al. Nat Rev Cancer 2017


ctDNA has substantial potential to be used throughout the patient journey

This is a non-promotional meeting intended for HCPs outside the USA. It may include scientific information about investigational compounds that may not be approved or valid in your jurisdiction

Time Adapted from Wan et al. Nat Rev Cancer 2017

ctDNA detection after surgery: an indication of molecular disease progression that precedes clinical relapse

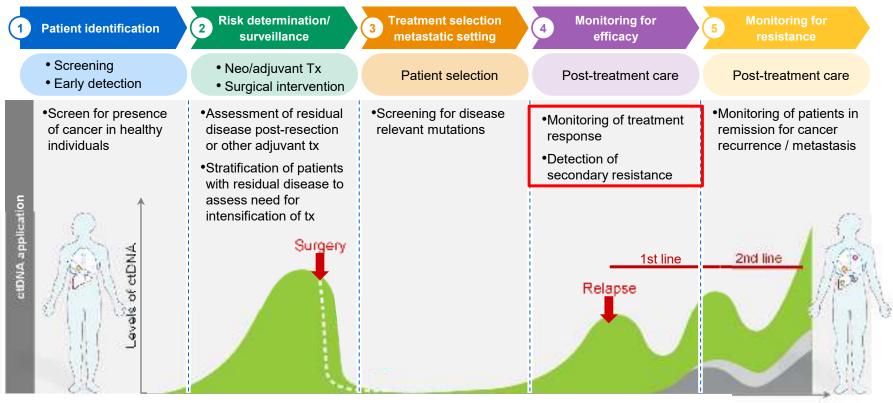


Avoids treating patients who do not require additional therapy

1. Copyright © 2017, Macmillan Publishers Limited, part of Springer Nature. All rights reserved Abbosh et al. Nature 2017 2. Reproduced with permission of Professor Karin Birkenkamp-Demtroder Birkenkamp-Demtroder et al. AACR 2018 3. Reproduced with permission of Professor Claus Anderson Reinert et al. AACR 2018

This is a non-promotional meeting intended for HCPs outside the USA. It may include scientific information about investigational compounds that may not be approved or valid in your jurisdiction

Example from CRC: using ctDNA to assess minimal residual disease after treatment

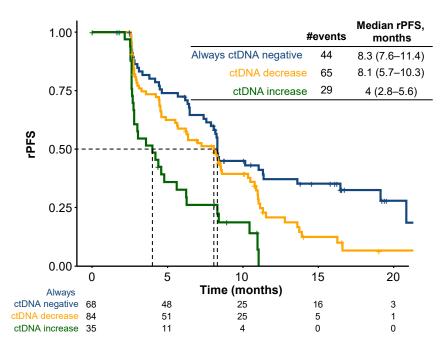

Relapse-risk stratification by ctDNA status

Signatera[™] bespoke, multiplex-PCR NGS assay

This is a non-promotional meeting intended for HCPs outside the USA. It may include scientific information about investigational compounds that may not be approved or valid in your jurisdiction

Reproduced with permission of Dr Tenna Henriksen Henriksen et al. ESMO 2020

ctDNA has substantial potential to be used throughout the patient journey



This is a non-promotional meeting intended for HCPs outside the USA. It may include scientific information about investigational compounds that may not be approved or valid in your jurisdiction

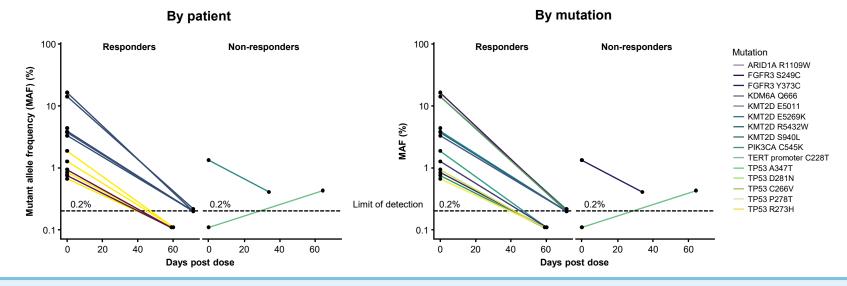
Time Adapted from Wan et al. Nat Rev Cancer 2017

Example from mCRPC: using ctDNA to assess treatment response in the metastatic setting

A.MARTIN (randomised, phase II study of ipatasertib and abiraterone vs abiraterone alone in mCRPC after docetaxel chemotherapy)

This is a non-promotional meeting intended for HCPs outside the USA. It may include scientific information about investigational compounds that may not be approved or valid in your jurisdiction

- Patients who remained ctDNA negative had the best rPFS, followed by patients experiencing a reduction in ctDNA
- Higher post-treatment ctDNA significantly correlated with worse rPFS


Comparison	HR	p value
ctDNA increase vs always ctDNA negative	2.89 (1.74–4.78)	<0.0001
ctDNA increase vs ctDNA decrease	2.16 (1.36–3.42)	0.0008
ctDNA decrease vs always ctDNA negative	1.55 (1.05–2.29)	0.0279

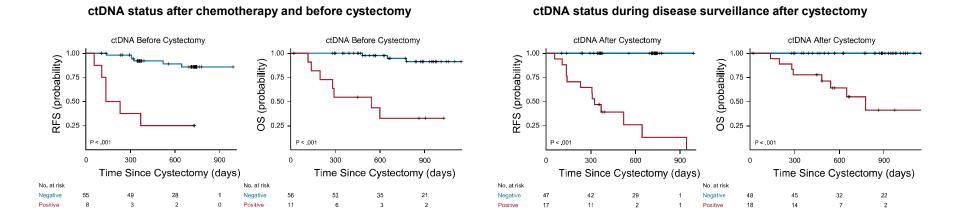
Reproduced with permission of Dr Jane Goodall Goodall et al. ASCO 2020

Example from metastatic urothelial cancer: using ctDNA to assess treatment response in the metastatic setting

BISCAY (phase Ib study of durvalumab + targeted therapies)

Durvalumab monotherapy treatment arm (Module D)

ctDNA monitoring at C3D1 indicates clearance of ctDNA in responding patients

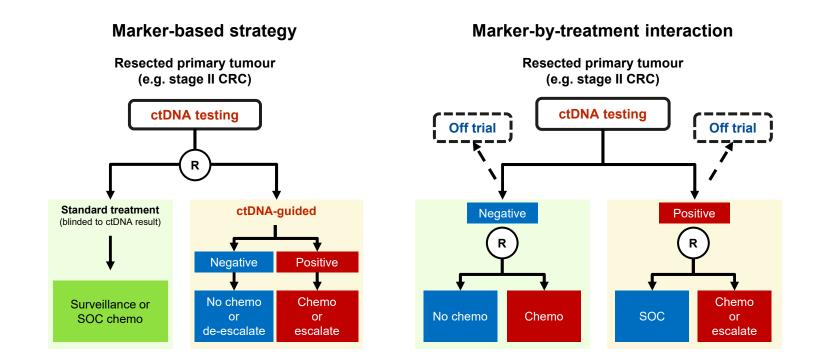

Bespoke NGS panel of 10 genes

This is a non-promotional meeting intended for HCPs outside the USA. It may include scientific information about investigational compounds that may not be approved or valid in your jurisdiction

Reproduced with permission of Dr Danielle Carroll Carroll et al. ASCO 2019

Example from MIBC: using ctDNA to assess treatment response in the early setting

Analysis of plasma samples from 68 patients with MIBC


Both ctDNA status before cystectomy and ctDNA status after cystectomy were prognostic for patient outcome (RFS and OS)

NGS

This is a non-promotional meeting intended for HCPs outside the USA. It may include scientific information about investigational compounds that may not be approved or valid in your jurisdiction

Copyright © 2019, American Society of Clinical Oncology Christensen et al. J Clin Oncol 2019

ctDNA is being investigated to select patients for adjuvant treatment in clinical trials

This is a non-promotional meeting intended for HCPs outside the USA. It may include scientific information about investigational compounds that may not be approved or valid in your jurisdiction

Tie et al. ESMO 2020

Example CRC: Selected ctDNA-guided randomised adjuvant trials

Country	Australia	Australia/ Canada	Australia	US/ Canada	Germany/ Austria/ Sweden	France	UK	Netherlands
Trial name (registration number)	DYNAMIC (ACTRN1261500 381583)	DYNAMIC-III (ACTRN1261700 1566325)	DYNAMIC- RECTAL (ACTRN1261700 1560381)	COBRA (NCT04068103)	CIRCULATE (NCT04089631)	PRODIGE 70 – CIRCULATE (NCT04120701)	TRACC (NCT04050345)	MEDOCC- CrEATE (NL6281/ NTR6455)
Study population	Stage II	Stage III	Rectal	Stage II (low risk)	Stage II	Stage II	Stage II/III	Stage II (low risk)
Assay	Safe-SeqS	Safe-SeqS	Safe-SeqS	Guardant LUNAR-1	Dresden NGS	ddPCR (methylation markers x 2)	In-house NGS	PGDx elio
Sample size	450	1000	408	1408	3609	1980	1621	1320
Design	SOC vs ctDNA guided	SOC vs ctDNA guided	SOC vs ctDNA guided	SOC vs ctDNA guided	ctDNA-by- treatment interaction	ctDNA-by- treatment interaction	SOC vs ctDNA guided	SOC vs ctDNA guided
Intervention	ctDNA+ (chemo) ctDNA– (no chemo)	De-escalate / escalate	ctDNA+ (chemo) ctDNA– (no chemo)	ctDNA+ (chemo) ctDNA– (no chemo)	ctDNA+ (chemo vs no chemo)	ctDNA+ (chemo vs no chemo)	De-escalate	ctDNA+ (chemo) ctDNA– (no chemo)

This is a non-promotional meeting intended for HCPs outside the USA. It may include scientific information about investigational compounds that may not be approved or valid in your jurisdiction

Tie et al. ESMO 2020

CDDF WORKSHOP

Measurable Residual Disease (MRD) and Circulating Tumour Nucleotides (ct DNA) in cancer drug development

Clinical Application of ctDNA in Bladder Cancer:

Phase 3 IMvigor010 trial

CDDF

Background Phase 3 IMvigor010

- MIUC carries a substantial risk for death such that nearly 50% of patients develop recurrence within 2 years of cystectomy¹⁻³
- Circulating tumor DNA (ctDNA)-positive patients represent a high-risk population in MIUC⁴
- IMvigor010, a global Phase III trial, evaluated adjuvant treatment with atezolizumab (anti–PD-L1) compared with observation in MIUC⁵
- A ctDNA exploratory analysis was included prospectively to evaluate if:
 - Plasma ctDNA is associated with worse prognosis in this data set ?
 - Atezolizumab provides DFS or OS benefit vs observation in patients with detectable ctDNA (ctDNA+) ?
 - ctDNA clearance occurs at a higher rate with atezolizumab vs observation ?

DFS, disease-free survival; MIUC, muscle-invasive UC.

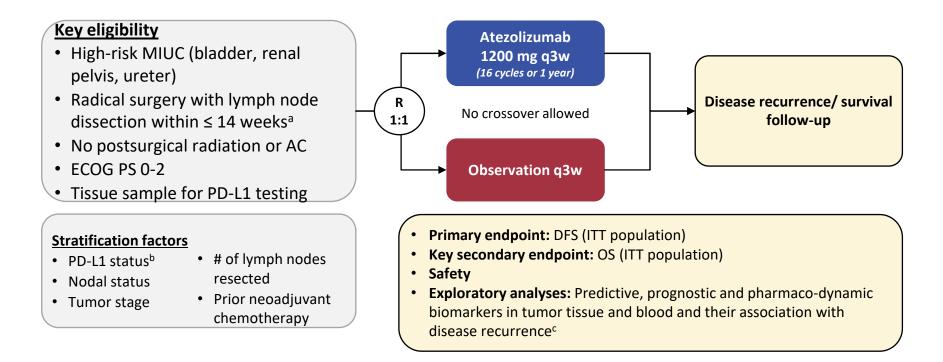
^{1.} Raghavan D, et al. *NEJM*. 1990;322:1129-38. 2. Stein JP, et al. *JCO*. 2001;19:666-75.

^{3.} Stenzl A et al. Eur Urol. 2009;55:815-25 4. Christensen E, et al. JCO. 2019;37.

^{5.} Hussain M, et al. ASCO 2020 [abs 5000].

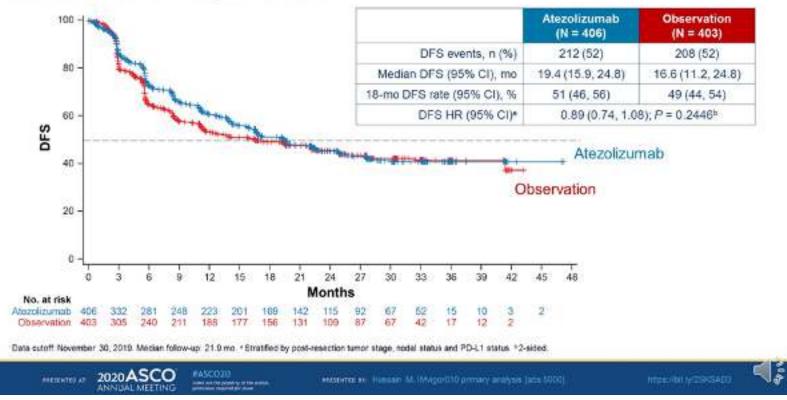
Adjuvant atezolizumab versus observation in muscle-invasive urothelial carcinoma (IMvigor010): a multicentre, open-label, randomised, phase 3 trial

Summary


Background Despite standard curative-intent treatment with neoadjuvant cisplatin-based chemotherapy, followed by radical surgery in eligible patients, muscle-invasive urothelial carcinoma has a high recurrence rate and no level 1 evidence for adjuvant therapy. We aimed to evaluate atezolizumab as adjuvant therapy in patients with high-risk muscle-invasive urothelial carcinoma.

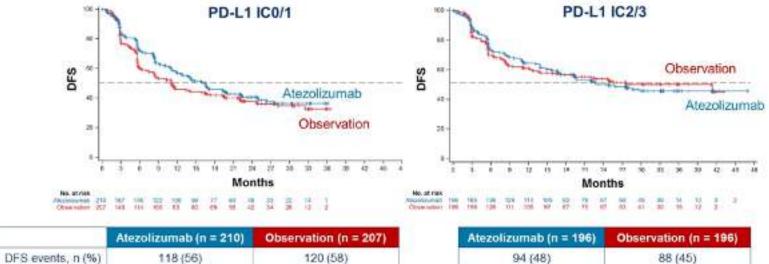
Lancet Oncol 2021

Published Online March 12, 2021 https://doi.org/10.1016/ \$1470-2045(21)00004-8


www.thelancet.com/oncology Published online March 12, 2021 https://doi.org/10.1016/51470-2045(21)00004-8

Phase 3 IMvigor010 adjuvant study in MIUC

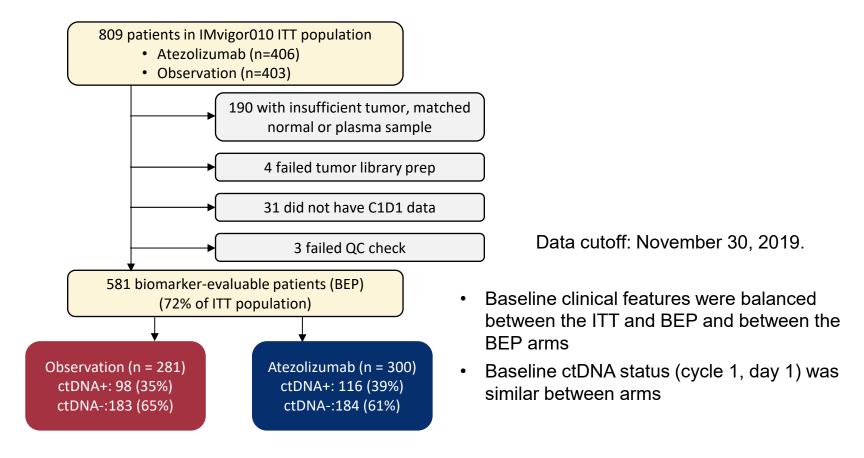
IMvigor010 did not meet its primary endpoint of DFS in the ITT population¹



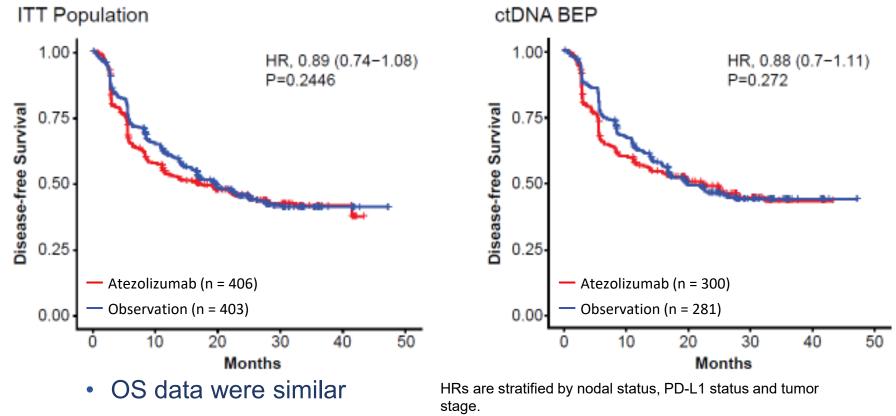
Presented By Maha Hussain at ASCO 2020

DFS by PD-L1 Status

HR (95% CI)4

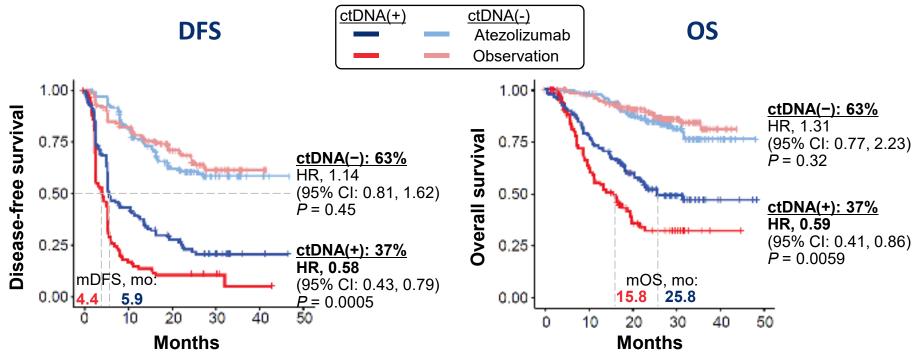

Data cutoff: November 30, 2019. IC2/3, PD-L1-expressing IC on 2 5% of tumor area (VENTANA, SP142 assay); IC0/1, < 5%, < Stratified by tumor stage and nodal status.

0.81 (0.63, 1.05)

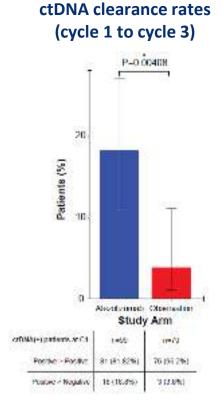

HEORNTEWAT 2020ASCO	#ASCO20	excession en trassen M. Olivigu:010 presary analysis (alte 5000).	TRDN://bit.ly/25KSA03	1	
---------------------	---------	---	-----------------------	---	--

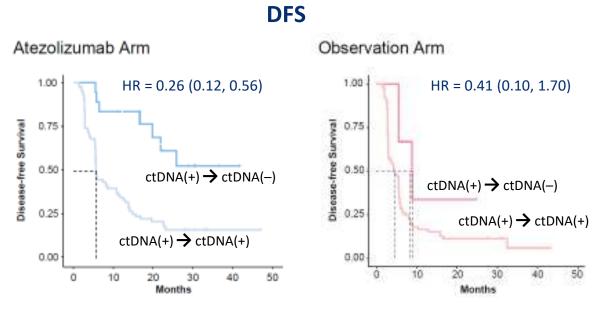
Presented By Maha Hussain at ASCO 2020

IMvigor010 ctDNA-evaluable patients were representative of the ITT population



DFS was similar between the ITT and BEP


P values are for descriptive purposes only.


ctDNA(+) patients had improved DFS and OS with atezolizumab vs observation

IMvigor010 confirmed the prognostic value of ctDNA status


Changes in ctDNA status over time were associated with treatment arm and survival

OS results were similar

IMvigor011 study design

Stratification factors

- Nodal status (positive vs negative)
- Tumour stage after cystectomy (≤pT2 vs pT3/pT4)
- PD-L1 IHC status (IHC score of IC0/1 vs IC2/3)
- Time from cystectomy to first ctDNA(+) sample (≤20 weeks vs >20 weeks)

NCT04660344

Conclusions IMvigor010

- In IMvigor010, post-surgical ctDNA positivity was associated with a high-risk of recurrence and death
- ctDNA positivity identified patients with MIUC likely to derive DFS and OS improvement from adjuvant atezolizumab
- TMB status was also associated with improved outcomes with adjuvant atezolizumab in the ctDNA+ population
- This work warrants validation in the prospective study IMvigor011
- If confirmed, the results may change our understanding of postsurgical cancer care

Article

ctDNA guiding adjuvant immunotherapy in urothelial carcinoma

Received: 8 December 2020

Accepted: 13 May 2021

Published online: 16 June 2021

Check for updates

Thomas Powles¹¹⁸, Zoe June Assaf^{2,18}, Nicole Davarpanah², Romain Banchereau², Bernadett E. Szabados³, Kobe C. Yuen², Petros Grivas^{4,5,6}, Maha Hussain⁷, Stephane Oudard⁸, Jürgen E. Gschwend⁹, Peter Albers¹⁰, Daniel Castellano¹¹, Hiroyuki Nishiyama¹², Siamak Daneshmand¹³, Shruti Sharma¹⁴, Bernhard G. Zimmermann¹⁴, Himanshu Sethi¹⁴, Alexey Aleshin¹⁴, Maurizio Perdicchio¹⁵, Jingbin Zhang¹⁶, David S. Shames², Viraj Degaonkar², Xiaodong Shen², Corey Carter², Carlos Bais², Joaquim Bellmunt¹²¹⁰ & Sanjeev Mariathasan^{2,19}

These findings demonstrate the use of ctDNA as a marker for MRD and response to atezolizumab, and link ctDNA to the biology of the tumours. These results may change our understanding of post-surgical cancer care. If validated in this setting, as well as across tumour types, the findings will also change clinical practice.

Nature | www.nature.com

Measurable Residual Disease (MRD) an **Circulating Tumour Nucleotides (ct DNJ** in cancer drug development

Summary

- ctDNA has many opportunities to inform our clinical practice
 - Early diagnosis
 - Track minimal residual disease
 - Monitor response and resistance
- Utility of ctDNA has been demonstrated across multiple tumour types and with many different treatment strategies including immunotherapy
- Use of ctDNA as a biomarker may be particularly well suited to monitor early stage disease and may help avoid over treatment of patients (help guide adjuvant therapy)

DDF

ctDNA is being used to select patients in clinical trials