

CDDF WORKSHOP

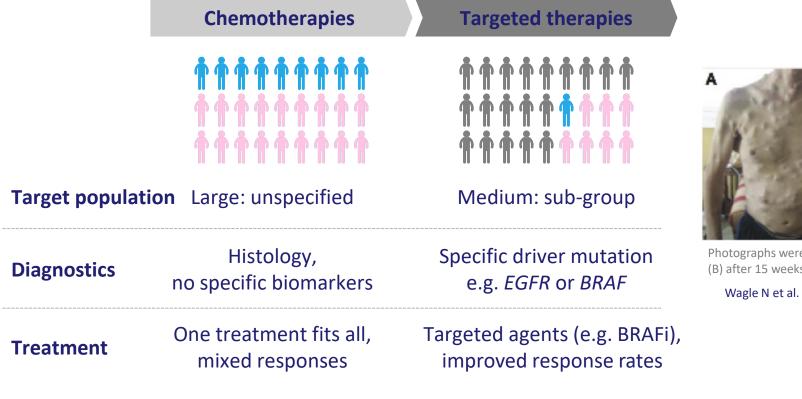
Measurable Residual Disease (MRD) and Circulating Tumour Nucleotides (ct DNA, in cancer drug development

Established and Novel ctDNA Methodologies

Dr Dominic G. Rothwell Nucleic Acid Biomarker Team, CR-UK Cancer Biomarker Centre, Manchester, UK

CDDF WORKSHOP

Measurable Residual Disease (MRD) and Circulating Tumour Nucleotides (ct DNA) in cancer drug development



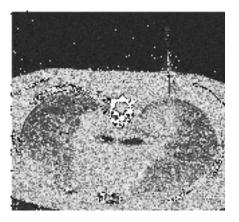
Disclaimer

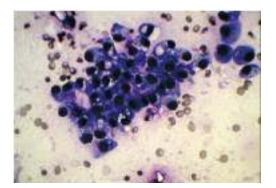
No disclosures

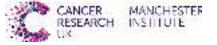
Evolution of precision medicine

Photographs were taken (A) before initiation of PLX4032, (B) after 15 weeks of therapy with PLX4032

Wagle N et al. J Clin Oncol 29:3085-3096 (2011).


MANCHESTER




Conventional Tumour Biopsies

Tumour biopsy is current gold-standard for molecular analysis, but:

- Invasive medical procedure which can be difficult and expensive
- Can be obtained long time prior to analysis (at initial resection)

- Often limited amounts of material is obtained
- Which lesion to analyse in metastatic disease?
- Collection of serial biopsies for analysis are extremely rare

Liquid biopsies can add value ...

when **monitoring** of disease progression / recurrence is essential

when tracking on-treatment **clonal evolution** of the tumour is needed

when tissue samples are insufficient, inadequate or exhausted

when solid biopsy is **difficult** or poses a high risk

due to lower cost, ease of collection

Sources of genetic material in liquid biopsies

8

Circulating tumour cells (CTCs) shed from primary or metastatic foci

- Very rare: ~1-5 cells per millilitre of blood
- Scarcity currently limits analysis and clinical utility
- Expensive to detect

Exosomes and other extracellular vesicles

- Abundant: 10¹⁰ vesicles per millilitre of blood
- Source of lipids, proteins, RNA species and to some extent DNA
- Difficult to isolate and analyse, not proven clinically

Double-stranded cell-free DNA (cfDNA) released from all cells

- Higher cfDNA amounts in cancer patients
- Tumour-derived circulating DNA (ctDNA) is released following apoptotic and necrotic cell death
- Relatively simple to isolate and analyse

Circulating Tumour DNA (ctDNA)

Circulating tumour DNA (ctDNA) released into circulation by apoptotic and necrotic death of tumour cells

Advantages:

7		7		
L				
Г			_	
L			-	
L				
ŀ	رر			

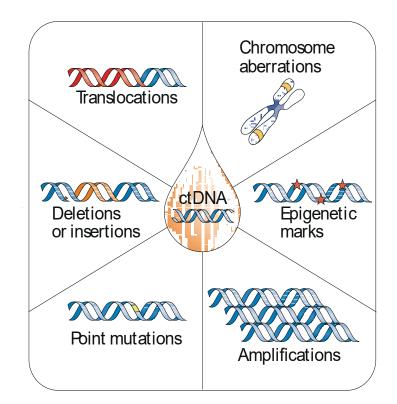
- Relatively simple to collect, isolate and analyse
- Provides real-time analysis of tumour (half-life <2hr)
- ctDNA generated from all disease sites, entire picture of disease

Disadvantages:

- Low concentration: ~5ng/mL plasma
- Highly fragmented (~170 bp)
- Background of 'normal' cfDNA dilutes out the tumour fraction of interest

Genetic information available from ctDNA

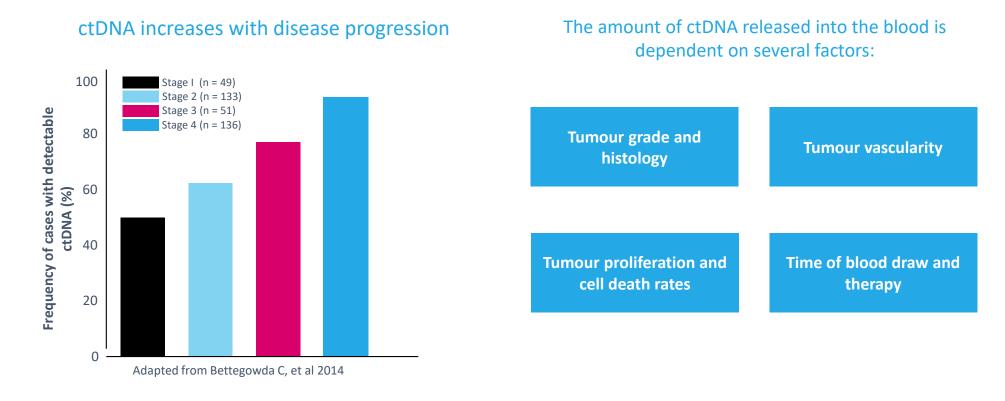
Somatic mutations:


- Point mutations
- Insertion/deletions

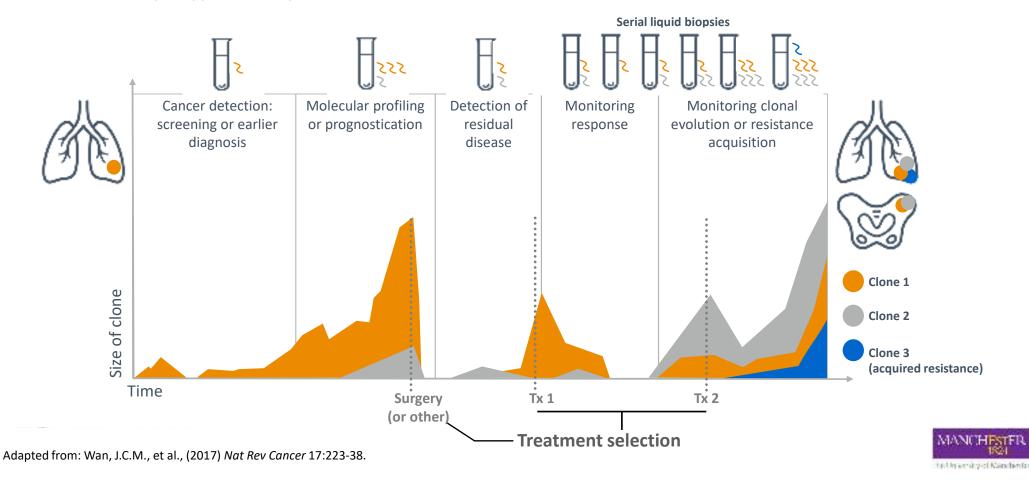
Chromosomal aberrations:

- Amplifications/deletions
- Translocations

Epigenetic modifications:


• Hyper/hypo-methylation

Detection of ctDNA requires highly sensitive techniques


How reliable is Comprehensive Genomic Profiling (CGP) in liquid vs tissue?

- Clinical utility of comprehensive cell-free DNA (cfDNA) analysis to identify genomic biomarkers in newly diagnosed metastatic non-small cell lung cancer (mNSCLC). *Leighl N.B. et al. AACR 2019.*
- 282 patients prospectively enrolled from 28 N American centers for standard tissue profiling and CGP in liquid (Guardant assay)
- cfDNA: 95% (268/282) completely genotyped
- Concordance of tissue and liquid was >98.2% for genes with FDA approved targeted therapy (EGFR, ALK, ROS1, BRAF)
- Liquid results were returned faster than tissue results
- (median 9 vs 15 days; p<0.0001)

Liquid biopsies can be used to monitor disease progression

Time course of a hypothetical patient

Liquid Biopsies in the Lung Cancer Clinic Today

- Molecular Diagnostic Test performed on circulating tumour DNA (ctDNA) detectable in cell free DNA (cfDNA) present in plasma from a single blood draw
- **2016:** FDA approved the 1st liquid biopsy test for detection of EGFR mutation in ctDNA (COBAS real-time PCR assay)
- 2020: FDA approved the 1st liquid biopsy tests of comprehensive genomic profiling (CGP) 'one stop shop' for multiple cancer related gene mutations, translocations, copy number changes
- Multiple laboratory developed / non-commercial assays being evaluated

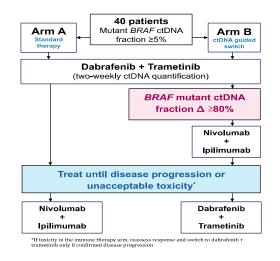
cfDNA-based molecular analysis: Available approaches

Real-time/droplet digital Polymerase Chain Reaction (ddPCR)

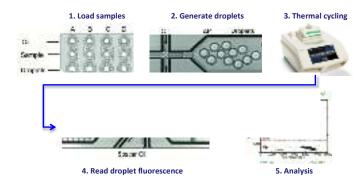
- PCR-based platform allows for highly precise and sensitive detection of single known mutations in circulating tumour DNA
- Destructive test, limited information

Targeted NGS (Next Generation Sequencing)

- **Comprehensive Genomic Profiling** identifies genomic alterations in many therapeutically relevant genes, allow clinicians to obtain information about genomic signatures, such as TMB and DDR
- Potential to re-analyse, highly informative

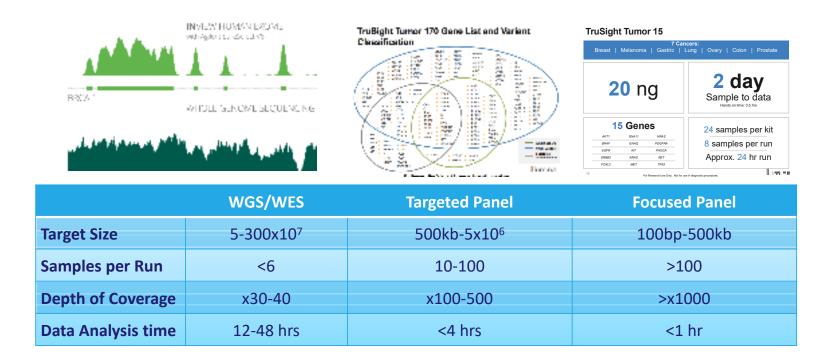

Rolfo et al., JTO 2021, 16(10).

ddPCR analysis of cfDNA (CAcTUS/DETECTION trials)


CirculAting Tumour DNA gUided therapy Switch (CAcTUS)

Hypothesis

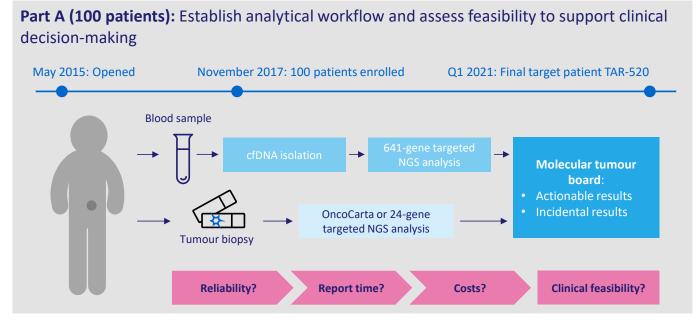
- In BRAF mutant melanoma efficacy of immunotherapy is enhanced ٠ by **response** to pre-treatment with dabrafenib + trametinib
- Changes in ctDNA levels can be used to accurately inform when to ٠ switch from targeted to immunotherapy



ddPCR Assay	Control Cell Line	A375	RM44	M381	RM59
	Mutation Status	(BRAF V600E)	(BRAF V600K)	(BRAF V600R)	(BRAF V600WT)
BRAF V600E	Determined %VAF	100.00	0.00	0.00	0.00
	SD %VAF	0.00	0.00	0.00	0.00
	Acceptance Range	>90%	<1%	<1%	<1%
	Outcome	Pass	Pass	Pass	Pass
BRAF V600K	Determined %VAF	0.00	78.77	0.00	0.00
	SD %VAF	0.00	0.54	0.00	0.00
	Acceptance Range	<1%	>75%, <85%	<1%	<1%
	Outcome	Pass	Pass	Pass	Pass
BRAF V600R	Determined %VAF	0.00	0.00	33.48	0.00
	SD %VAF	0.00	0.00	1.76	0.00
	Acceptance Range	<1%	<1%	>28%, <38%	<1%
	Outcome	Pass	Pass	Pass	Pass
BRAF V600plex (E + K +R)	Determined %VAF	100.00	78.39	32.15	0.00
	SD %VAF	0.00	0.85	1.78	0.00
	Acceptance Range	>90%	>75%, <85%	>28%, <38%	<2%
	Outcome	Pass	Pass	Pass	Pass

Tel Pranky of Manchester

NGS Approaches – what do you need?



Clinical utility of ctDNA profiling: TARGET

TARGET: <u>T</u>umour ch<u>AR</u>acterisation to <u>G</u>uide <u>Experimental Targeted therapy</u>

Develop a robust workflow supporting clinical decisionmaking that can be

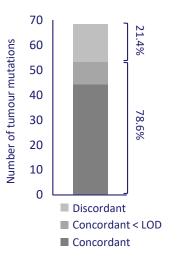
- delivered on a routine basis
- with data turnaround time compatible with clinical practice
- at an affordable cost
- leads to **benefit** in a proportion of patients

Part B (420 patients): Test clinical utility following selection of patients in real time to molecularly matched trials on the basis of their ctDNA and / or tumour genomic profile

Clinical utility of ctDNA profiling: The TARGET trial

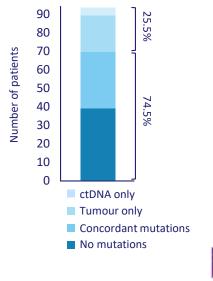
100

patients recruited


70

patients had \geq 1 mutations (ctDNA)

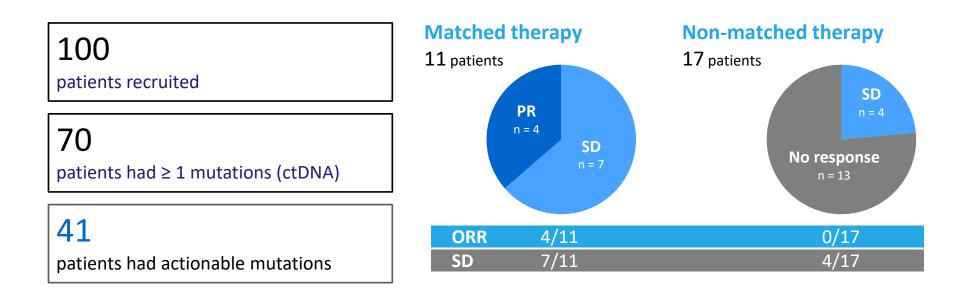
54 patients had ≥ 1 mutations (tumour)


Concordance of detected mutations

78.3% (54/69) of **nonsynonymous mutations** identified by tumour NGS were also identified by ctDNA NGS

Concordance within the patients

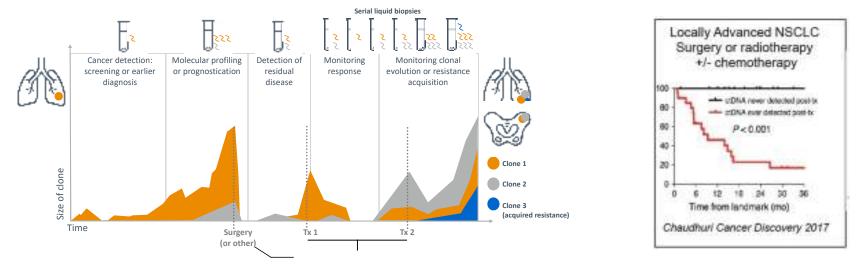
74.5% (70/94) of **patients** had mutational concordance between tissue and ctDNA



Rothwell, D.G., et al. (2019) Nat Med 25:738-43.

In University of Manchester

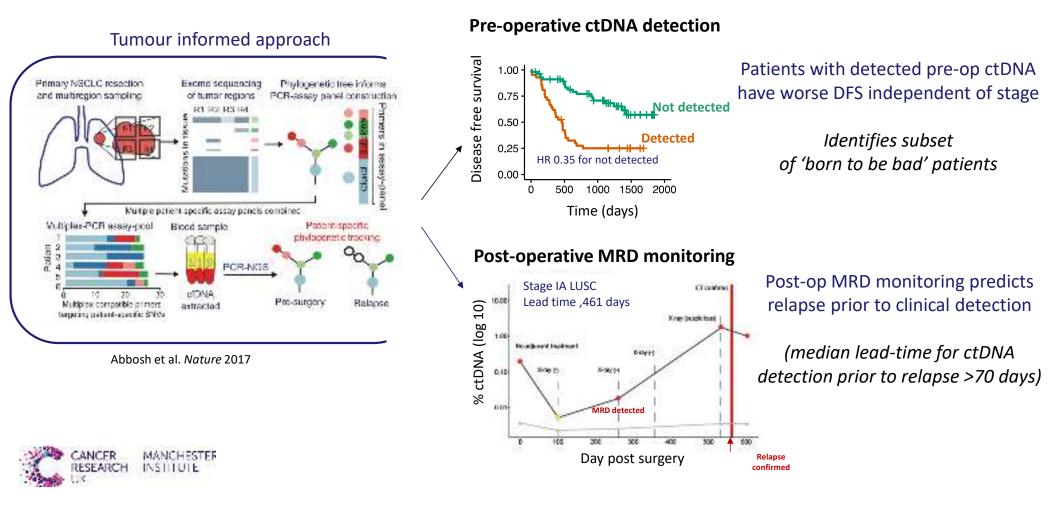
Clinical utility of ctDNA profiling: The TARGET trial



Rothwell, D.G., et al. (2019) Nat Med 25:738-43.

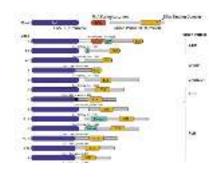
Beyond molecular Diagnosis – detection of ctDNA after curative intent treatment

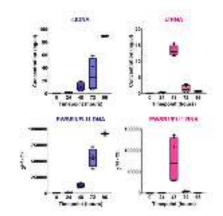
Time course of a hypothetical patient

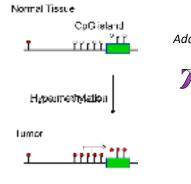


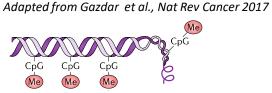
- Numerous studies showing detection of ctDNA after treatment related to poor prognosis in patients
- ctDNA enables longitudinal analysis for MRD type studies

Pre-operative ctDNA - prognostic for LUAD & predicts utility for MRD monitoring


cfDNA-based molecular analysis: Novel approaches

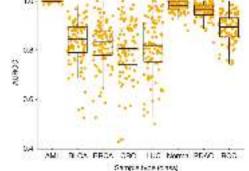

Detection of cell-free RNA (cfRNA)


- Studies looking at presence of tumour specific RNA in plasma, potentially higher sensitivity and specificity
- Detection of cancer-specific RNA fusions in plasma of patients as sensitive marker of MRD


Methylation profiling of cfDNA

- Cancer-specific epigenetic changes used to detect circulating tumour DNA
- Allows low-cost and highly sensitive detection, classification and monitoring of cancer.

cfDNA methylation profiling for tumour detection


cfDNA methylation profiling shows clinical potential

- Changes in methylation profiles widely associated with cancer and thought to be an early event
- Aberrant DNA methylation a more broadly applicable marker of tumor DNA in blood than mutations
- Recent studies proved high sensitivity for early detection of various cancer types
- NHS piloting methylation based blood test that detects more than 50 cancers (*Garelli* blood test, GRAIL, 16% Stage I cancers)

CANCER MANCHESTER RESEARCH INSTITUTE

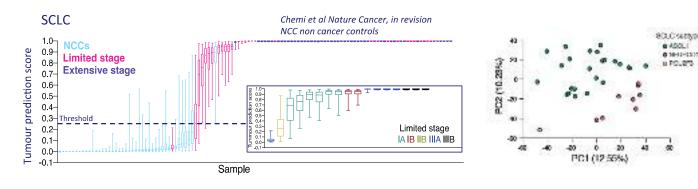
Sensitive tumour detection and classification using plasma cell-free DNA methylomes

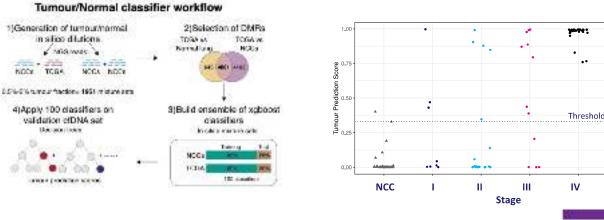
San 15 Shen³⁴, Rojal Singhamah¹⁴³, Gordon Behringer¹¹⁴, Alalen Cultarevarthy¹²³, Michael H. A. Rooth¹²⁴, Manne Charlecky, Philps, Cazarov, Aedels Royat, "Ing Wang," Entranel V. Cost K& Schurz Mara, Ana Spearatov, Tago da Silva Metinal, Yadom Wang), David Roulade¹⁴, Ilias Entayeble⁴, Zhao Chen, Sgay Chow¹, Trasy Murphy¹, Andrea Arrudal, Grainne M. O Kana, Seeska Lini, 'Andrea Marsuru', John D. Welherson', Catherne O'Sterie, Yatasha Leighi, Philippe, Leardin, Neil Bechner, Geoffrey Lini¹⁴⁵, Mark D. Minden', Steven Gallinger²⁴⁶, Anna Goldenberg¹¹, Trevor J. Pugh¹⁴, Mishael M. Hoffman^{14,10}, Scott V. Bratman¹⁴, Rayjean J. Hung²⁴ & Danled D. De Carvalho¹⁴⁵

ORIGINAL ARTICLE

b

Sensitive and specific multi-cancer detection and localization using methylation signatures in cell-free DNA


M. C. Liu^{1†}, G. R. Oxnard^{2†}, E. A. Klein³, C. Swanton^{4,5}, M. V. Seiden^{6*} & on behalf of the CCGA Consortium¹



Lung cancer-specific methylation profiles in ctDNA

- T7-MBD-Seq assay for sensitive detection of cancer-specific global methylation profiles with low input cfDNA
- Detects stage IA SCLCs, SCLC subtypes and identifies CUPs
- NSCLC-specific classifiers under optimization, detect stage I-IV NSCLCs
- Targeted and fragmentomics workflow ongoing to improve sensitivity & specificity

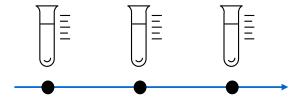
te Unamity of Manchester

stage

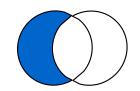
• 1

• 11

• 11


IV
NCC

type


NSCLC

NCC

Conclusions: ctDNA in the clinic

ctDNA can simplify procedures for obtaining a sample, making a repeat biopsy feasible and allowing sensitive, real-time monitoring of tumour genomics

ctDNA genomic profiling provides a representative picture of the tumour genome and is complementary to tissue analysis

There is mounting evidence that encourages routine implementation of ctDNA testing as an adjunct to tumour testing

Acknowledgements

Cancer Biomarker Centre

Caroline Dive

Nucleic Acid Biomarker team

Alexandra Clipson Francesca Chemi Alicia Conway **Daniel White** Sumitra Mohan Victoria Foy Sophie Richardson Nigel Smith **Hayley Johnson** Dan Slane-Tan All NAB members

ANCER MANCHESTER **INSTITUTE** ARCH

Memorial Sloan Kettering **Cancer Center**

Charles Rudin Triparna Sen John Poirier

Pre-clinical Pharmacology team

Kristopher Frese Kathryn Simpson Melanie Galvin

Bioinformatic and Biostatistics team

Alastair Kerr Simon Pearce Kate Murat Steven Hill Saba Ferdous

The Christie NHS foundation trust

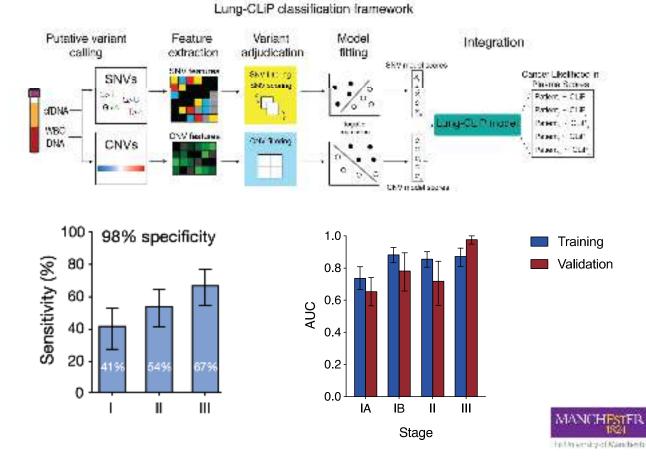
Matt Krebs Natalie Cook **Andrew Hughes Fiona Blackhall** Lynsey Priest

Histology Core Facility

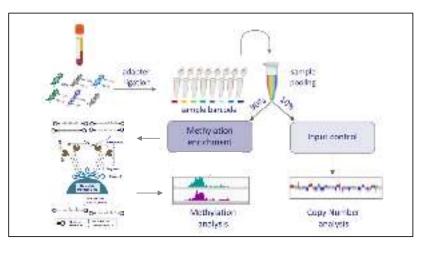
Garry Ashton David Millard

Patients and Families

Menactal Stoan Ketterine



ctDNA in Early Detection: Lung cancer likelihood in plasma assay (Lung-CLiP)


- A somatic alteration-based cfDNA ٠ lung cancer early detection assay
- Combines sequencing of cfDNA ٠ and WBCs with multilayer machine learning framework
- Takes into account issue of CHiP ٠ variants present in cfDNA
- Validated in an independent, • prospectively collected cohort
- Sensitivity for stage I NSCLC ~40% • at 98% specificity

Chabon et al. Nature 2020

Clinical utility of cfDNA Methylation profiling

Bioinformatic development


- Whole genome NGS analysis to determine enriched DNA regions
- Identify tissue specific and cancer specific methylation changes (DMR)

Technical development

- Pool multiple samples using unique sample barcode with NGS approach
- Pooling overcomes problem of limited DNA input from cfDNA

MANCHESTER 1821