MRD concepts, methodology and application

Bruno Paiva

Hematology and Immunology Departments. Clinica Universidad de Navarra Flow Cytometry Core - CIMA LAB Diagnostics Universidad de Navarra Spanish Myeloma Group (GEM) EuroFlow Consortium

Disclosures

Company	Relationship
Adaptive	Honoraria
Amgen	Honoraria
Becton Dickinson	Honoraria
BMS-Celgene	Consultant, Honoraria, Research Grant, Scientific Advisory Board
GSK	Honoraria, Research Grant, Scientific Advisory Board
Janssen	Consultant, Honoraria, Scientific Advisory Board
Roche	Research Grant
Sanofi	Consultant, Honoraria, Research Grant, Scientific Advisory Board
Takeda	Consultant

My true disclosure about the role of MRD

Carlos Pazos

🖸 🖪 🖸 💿 💿 @molasaber

Intensive research efforts in the last decades

One of the most powerful prognostic factors

Association of MRD with survival outcomes in AML

A Systematic Review and Meta-analysis in 11,151 patients

Sensitivity matters

MRD with NGS vs MFC in pediatric BCP-ALL

MRD assessment in hematological malignancies

Remains controversial

- Dramatic improvement in treatment efficacy only took place in the last decade for some diseases (no need for MRD if CR rates are low)
- False-expectation about the concept of MRD (it may be the pathway to, but negative MRD does not mean cure)
- Lack of standardization in the field of MRD (suboptimal results)

Heterogeneity of decentralized MRD using MFC in AML

Absence of harmonization nor standardization at the national level

Methodology

Heterogeneity of decentralized MRD using MFC in AML

Absence of harmonization nor standardization at the national level

Paiva B, Vidriales MB, Sempere A, et al. Leukemia. 2021;35(8):2358-2370.

Heterogeneity of decentralized MRD using MFC in AML Absence of harmonization nor standardization at the national level

Reporting

Paiva B, Vidriales MB, Sempere A, et al. Leukemia. 2021;35(8):2358-2370.

Heterogeneity in virtually all aspects of MFC based MRD testing impacted in its ability to discriminate patients with different outcome

Question	Answer	No. of patients	Reduced risk of CIR	HR (95% CI)	P value	<i>P</i> value for interaction
	≤2	265		0.9 (0.6 – 1.3)	.590	
No. of combinations	>2 - ≤4	375		0.7 (0.5 – 0.9)	.008	.002
	>4	326		0.6 (0.4 – 0.9)	.007	
	≤50.000	26		NA	NA	
No. of cells	>50.000 - ≤500.000	327		0.8 (0.6 – 1.1)	.210	016
measured	>500.000	600		0.7 (0.5 – 0.9)	.002	.010
	Other	13		NA	NA	
	LAIP	424		0.8 (0.6 – 1.0)	.099	
Approach	DfN	50		0.3 (0.1 – 0.7)	.010	.109
	LAIP + DfN	492		0.7 (0.5 – 0.9)	.016	
MRD burden	Nucleated cells	886		0.7 (0.6 – 0.9)	.006	.001
	Leukocytes (CD45 ⁺)	80		0.5 (0.3 – 1.0)	.063	
Overall	-	966		0.7 (0.6 – 0.9)	<.001	

Application depending on clinical need and methodological robustness

	ALL	AML	CML	CLL	ММ
Complexity	Intermediate	High	Low	Intermediate	Intermediate
Standardization	High	Low	High	Low	Intermediate
Clinical trials	Yes	Yes	Yes	Yes	Yes
Routine practice	Yes	Yes	Yes	Infrequent	Intermediate
Treatment decisions	Yes	Yes	Yes	Infrequent	Infrequent

Application depending on clinical need and methodological robustness

	ALL	AML	CML	CLL	ММ
Complexity	Intermediate	High	Low	Intermediate	Intermediate
Standardization	High	Low	High	Low	Intermediate
Clinical trials	Yes	Yes	Yes	Yes	Yes
Routine practice	Yes	Yes	Yes	Infrequent	Intermediate
Treatment decisions	Yes	Yes	Yes	Infrequent	Infrequent

Application depending on clinical need and methodological robustness

	ALL	AML	CML	CLL	ММ
Complexity	Intermediate	High	Low	Intermediate	Intermediate
Standardization	High	Low	High	Low	Intermediate
Clinical trials	Yes	Yes	Yes	Yes	Yes
Routine practice	Yes	Yes	Yes	Infrequent	Intermediate
Treatment decisions	Yes	Yes	Yes	Infrequent	Infrequent

Application depending on clinical need and methodological robustness

	ALL	AML	CML	CLL	ММ
Complexity	Intermediate	High	Low	Intermediate	Intermediate
Standardization	High	Low	High	Low	Intermediate
Clinical trials	Yes	Yes	Yes	Yes	Yes
Routine practice	Yes	Yes	Yes	Infrequent	Intermediate
Treatment decisions	Yes	Yes	Yes	Infrequent	Infrequent

Evolving treatment landscapes

MRD and surrogacy

Association of treatment effects on OS, CR and EFS in AML¹ CR but persistent MRD = NO CR²

- 1. Norsworthy KJ, et al. J Clin Oncol. 2022;40(8):847-854.
- 2. Araki D, et al. J Clin Oncol 2015;34:329-336.

Predicting treatment effect on PFS using MRD surrogate end point

The example of CLL (chemoimmunotherapy)

MRD rates using NGF in the CLARION trial

15.7% KMP vs 15.5% VMP

MRD rates in the investigational vs control arm

Dara effect in Maia, Alcyone, Pollux and Castor (~5-fold difference)

	A		E	MAIA		
MRD negativity (10⁻⁵)	D-VMP	VMP	<i>P</i> value	D-Rd	Rd	<i>P</i> value
ІТТ	28%	7%	<.0001	29%	9%	<.0001
≥CR	59%	28%	<.0001	58%	34%	.0001
	POLLUX					
		POLLU	x		CASTO	र
MRD negativity (10 ⁻⁵)	 D-Rd	POLLU Rd	X <i>P</i> value	D-Vd	CASTOF Vd	R P value
MRD negativity (10 ⁻⁵) ITT	D-Rd 32.5%	POLLU Rd 7%	X <i>P</i> value <.0001	D-Vd 15%	CASTOF Vd 2%	P value <.0001

MRD rates using NGF in the CASSIOPEIA trial

64% D-VTd vs 44% VTd (CR rates, 39% vs 26%)

First primary endpoint, end of induction MRD negativity by NGF (10⁻⁵), was met in ITT analysis

Patients with MRD negativity at the end of induction therapy

Low number of not assessable/missing[†] MRD status: Isa-RVd (10.6%) and RVd (15.2%)

CR rates were 24.2% vs 21.6% (*P*=0.46)

MAT-GLB-2105440 v1.0 Approval Date: 11/2021

**P* value derived from stratified conditional logistic regression analysis

GMMG and Heidelberg University Hospital | ASH 2021 Missing NGF-MRD values were due to either patients' loss to follow-up during induction therapy or to missing bone marrow samples or technical failures in measurement counted as non-responders, i.e. NGF-MRD positive

CI, confidence interval; d, dexamethasone; Isa, isatuximab; ITT, intent-to-treat; MRD, minimal residual disease; NGF, next-generation flow; OR, odds ratio; R, lenalidomide; V, bortezomib

Learning in clinical trials how (or not) to use MRD

MASTER trial

Study design

*24 and 72 weeks after completion of therapy

MASTER trial

Progression-free survival and overall survival

Lenalidomide vs observation in MRD negative patients

Results from the MRC Myeloma XI trial

No. at risk (No.	censored):						
MRD+/(U)HiR	45 (0)	21 (4)	15 (5)	4 (12)	3 (13)	0 (15)	
MRD+/SR	72 (1)	52 (7)	31 (14)	17 (22)	10 (25)	6 (28)	0 (33)
MRD-/(U)HiR	102 (0)	68 (17)	36 (37)	15 (47)	7 (51)	0 (57)	
MRD-/SR	96 (1)	83 (10)	48 (37)	25 (54)	16 (60)	7 (67)	0 (73)

Can MRD be used to interrupt or prolong treatment?

Results from the GEM2014MAIN trial

Annual MRD

Can MRD be used to interrupt or prolong treatment? Results from the GEM2014MAIN trial

Rosiñol L, et al. Blood 2021;138 (Supplement 1): 466.

Once the lessons are learned, there should be stringent standardization in clinical laboratories

Methods for measuring MRD per IMWG guidelines¹ NGF

1. Kumar S, et al. Lancet Oncol. 2016;17:e328-e346.

240

- 2. Facon T, et al. Blood. 2019;133(18):1953-1963.
- 3. Paiva B, et al. J Clin Oncol. 2020;38(8):784-792.
- 4. Terpos E, et al. Hemasphere. 2019;3(6):e300.

Points for discussion

- MRD is poised to be the most relevant prognostic factor in most hematological malignancies
- There is room for improvement, particularly if authorities promote/enforce complete standardization (IVD)
- Any MRD level matters in terms of risk of relapse
 - True in 90% of patients (long-term survivors with persistent disease)
 - Undetectable MRD should be defined with the highest possible sensitivity
 - Improve the definition of MRD cells (eg, CH mutations) to avoid false-positives
- Per the number of ongoing trials, it is plausible that by 2030 there will be guidelines on how to use MRD for treatment decisions in some hematological malignancies
- With very few exceptions, undetectable MRD rates precede years in advance a benefit in PFS
 - Methodological and treatment heterogeneity are barriers to better statistical outcomes
 - Can you imagine knowing the readout of most trials ~12 months after the last patient enrolled?