Novel Preclinical Models to Assess the Value of New Drug Combinations

James H. Doroshow, M.D.
Director, Division of Cancer Treatment and Diagnosis
National Cancer Institute, NIH, USA

NCI Almanac Screening Strategy

- **Systematic** study of 5000 pair-wise combinations of all FDA-approved oncology drugs across NCI-60
- Over 1200 more than additive combinations discovered
- **In vivo** validation conducted for promising combos never before studied in human trials to determine therapeutic index in Xgs from NCI 60 lines

NCI ALMANAC Website: All combination data publicly available at: https://dtp.cancer.gov/ncialmanac
In Vitro Activity and In Vivo Efficacy of Bortezomib and Clofarabine

Solid diamonds indicate > additive in vivo activity.
Bortezomib/Clofarabine Combination Produces DNA DSBs and Markers of Apoptosis in Responsive But Not Unresponsive Xenografts
In Vitro Activity and In Vivo Efficacy of Nilotinib and Paclitaxel

Solid diamonds indicate > additive in vivo activity

-Synergy not due to enhanced apoptosis, decreased drug efflux

-Clinical trial: 24 pts: 4 PRs, 12 SD; all 4 PRs (ovary, 2 endo, anal) progressed on prior paclitaxel, no gr 3 neuropathy (80 mg/m² D 1, 8, 15 paclitaxel), on study 7.3 mo median (2-41 mo)
Exploratory Rare Tumor PDX Study: NCI’s Patient Derived Models Repository
NCI Patient Derived Models Repository (PDMR)

PDX Model Development (solid tumor histologies)
- ✓ 576 Histologically Confirmed PDX Models
 - 295 Models in Final QC (WES, RNASeq, STR, Regrowth from Freeze, etc.)
 - 281 Public PDX Models (Median passage = P2)
- ✓ 525 PDX Models in P0, Pending Growth (Avg 47% take-rate)
- ✓ Focus on **Understudies/Rare Cancer Histologies**: MPNST, Ewing's Sarcoma, Osteosarcoma, Salivary Gland Cancer, etc.
- ✓ Molecular Data available through public website: https://pdmr.cancer.gov/
- ✓ Models available to academic and commercial researchers at minimal cost

In Vitro 2D & 3D Model Development, Public Models
- ✓ 54 PDOrgs: Patient/PDX-Derived Organoid Models
- ✓ 75 PDCs: Patient/PDX-Derived Cancer Cell Cultures
- ✓ 177 CAFs: Cancer-Associated Fibroblasts

Develop Matched PDX and 2D/3D Models
- ✓ Public and Final QC models
- ✓ 32 Models with matched PDX, PDOrg, and PDC
- ✓ Function as a Hub for PDXnet consortium
Exploratory Rare Tumors PDX Study

Perform a systematic in vivo screening study to identify novel therapeutic combinations in

39 PDX rare cancer models developed by NCI-PDMR

Selection of models based on:

a) High need for effective therapeutics
b) Lack of new therapies over the past 10-20 years
c) Existing patient population in NCI clinics

56 Novel Investigational Therapeutic Combinations selected for testing; only 2 in clinical trials

<table>
<thead>
<tr>
<th>Model</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenocarcinoma - anal</td>
<td>1</td>
</tr>
<tr>
<td>Adenocarcinoma - small intest.</td>
<td>1</td>
</tr>
<tr>
<td>Alveolar soft part sarcoma</td>
<td>1</td>
</tr>
<tr>
<td>Carcinosarcoma of the uterus</td>
<td>3</td>
</tr>
<tr>
<td>Ewing sarcoma/Peripheral PNET</td>
<td>3</td>
</tr>
<tr>
<td>Gastrointestinal stromal tumor</td>
<td>2</td>
</tr>
<tr>
<td>Hurthle cell neoplasm (thyroid)</td>
<td>1</td>
</tr>
<tr>
<td>Liposarcoma</td>
<td>3</td>
</tr>
<tr>
<td>Malig. periph. nerve sheath tum.</td>
<td>3</td>
</tr>
<tr>
<td>Merkel cell tumor</td>
<td>3</td>
</tr>
<tr>
<td>Mesothelioma</td>
<td>2</td>
</tr>
<tr>
<td>Neuroendocrine cancer, NOS</td>
<td>3</td>
</tr>
<tr>
<td>Osteosarcoma</td>
<td>3</td>
</tr>
<tr>
<td>Penile squamous car.(epidermoid)</td>
<td>1</td>
</tr>
<tr>
<td>Rhabdomyosarcoma, NOS</td>
<td>2</td>
</tr>
<tr>
<td>Salivary gland cancer</td>
<td>3</td>
</tr>
<tr>
<td>Small cell lung cancer</td>
<td>1</td>
</tr>
<tr>
<td>Synovial sarcoma</td>
<td>3</td>
</tr>
</tbody>
</table>

Total of 2,184 model x drug response assessments
Exploratory Rare Tumors PDX Study: Methods

Phase 1: Test novel therapeutic combinations in n-of-4 treatment cohorts for exploratory studies. Monitor until tumor regrows

- 39 models x 56 combinations, sequential passaging required
- Each passage: One vehicle control arm and 7 combination arms; minimum of 8 passages to complete testing of combinations
- QC of material at every passage by Low Pass WGS, pathology review, and %human DNA by qRT-PCR. Body weight monitored throughout for toxicity

Phase 2: If a response is observed with the combination, repeat the study with single agent arms. Determine if response is driven by a single agent or the combination

Phase 3: For combinations that have additive/synergistic affects, perform a full efficacy study with planned sampling for biomarker exploration and PK
Exploratory Studies Underway

Phase 1: Test novel therapeutic combinations in n-of-4 treatment cohorts for exploratory studies

- Each passage of PDX: 1 vehicle control arm + 7 combination arms; minimum 8 passages needed
- Monitor models until tumors regrow to assess durable response

Ewing Sarcoma

Merkel Cell Carcinoma

![Graphs showing tumor volume change over study days for Ewing Sarcoma and Merkel Cell Carcinoma](chart.png)

<table>
<thead>
<tr>
<th>Passage</th>
<th>Tumor Volume (mm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D38</td>
<td></td>
</tr>
<tr>
<td>D118</td>
<td></td>
</tr>
<tr>
<td>D40</td>
<td></td>
</tr>
<tr>
<td>D120</td>
<td></td>
</tr>
</tbody>
</table>

Vehicle Control
Visual Best Response Binning Example

Bin 1: CR Achieved >1 timepoint (<60mm³)
Bin 2: Tumor regressed ~30%, durable response (0.5-1c)
Bin 3: Tumor regressed ~30%, regrew at drug removal
Bin 4: Stable, durable response (0.5-1 cycle)
Bin 5: Stable, regrew at drug removal
Bin 6: Slowed, but progressive growth
Bin 7: Grew at Same Rate as Control

Also Use: RM-EFS: Relative Median to Event-free Survival (relative time to tumor quadrupling, right censored; adapted from Houghton et al., 2007)
Paclitaxel, Nilotinib (n=34)

Responses observed in 16/34 models

- **Bin 1**: CR Achieved >1 timepoint (<60mm³)
- **Bin 2**: Tumor regressed ~30%, **durable** response (0.5-1c)
- **Bin 3**: Tumor regressed ~30%, regrew at drug removal
- **Bin 4**: Stable, **durable** response (0.5-1 cycle)
- **Bin 5**: Stable, regrew at drug removal
- **Bin 6**: Slowed, but progressive growth
- **Bin 7**: Grew at Same Rate as Control
Phase 2: Paclitaxel, Nilotinib Single Agent Comparisons Ongoing

GIST

Ewing Sarcoma

Control
Nilotinib
Paclitaxel
Nilotinib + Paclitaxel

First two studies completed, 10-15 additional studies planned

GIST: PR driven by Paclitaxel single agent

Ewing Sarcoma: regression only seen with combination (arrow)
Several Promising Combinations, Single Agent Studies Underway

VEGFRi + EGFRi
21/34 models responding

Nucleoside analog + HDACi
16/33 models responding

CDK4/6i + Alkylating agent
8/16 models responding

<table>
<thead>
<tr>
<th>Bin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bin 1</td>
<td>CR Achieved >1 timepoint (<60mm³)</td>
</tr>
<tr>
<td>Bin 2</td>
<td>Tumor regressed ~30%, durable response (0.5-1c)</td>
</tr>
<tr>
<td>Bin 3</td>
<td>Tumor regressed ~30%, regrew at drug removal</td>
</tr>
<tr>
<td>Bin 4</td>
<td>Stable, durable response (0.5-1 cycle)</td>
</tr>
<tr>
<td>Bin 5</td>
<td>Stable, regrew at drug removal</td>
</tr>
<tr>
<td>Bin 6</td>
<td>Slowed, but progressive growth</td>
</tr>
<tr>
<td>Bin 7</td>
<td>Grew at Same Rate as Control</td>
</tr>
</tbody>
</table>
Merkle Cell Tumor Responses vs All Drugs

Drug combinations: n=21

Bin 1: CR Achieved >1 timepoint (<60mm³)

Bin 2: Tumor regressed ~30%, durable response (0.5-1c)

Bin 3: Tumor regressed ~30%, regrew at drug removal

Bin 4: Stable, durable response (0.5-1 cycle)

Bin 5: Stable, regrew at drug removal

Bin 6: Slowed, but progressive growth

Bin 7: Grew at Same Rate as Control

Drug combinations: n=14

Drug combinations: n=21
Synovial Sarcoma Responses vs All Drugs

Drug combinations: n=13

Drug combinations: n=20

Drug combinations: n=8

<table>
<thead>
<tr>
<th>Bin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CR Achieved >1 timepoint (<60mm²)</td>
</tr>
<tr>
<td>2</td>
<td>Tumor regressed ~30%, durable response (0.5-1c)</td>
</tr>
<tr>
<td>3</td>
<td>Tumor regressed ~30%, regrew at drug removal</td>
</tr>
<tr>
<td>4</td>
<td>Stable, durable response (0.5-1 cycle)</td>
</tr>
<tr>
<td>5</td>
<td>Stable, regrew at drug removal</td>
</tr>
<tr>
<td>6</td>
<td>Slowed, but progressive growth</td>
</tr>
<tr>
<td>7</td>
<td>Grew at Same Rate as Control</td>
</tr>
</tbody>
</table>
Summary

• Systematic in vitro screening with in vivo follow-up of FDA approved anticancer drugs has produced multiple, novel, active therapeutic combinations, at least one of which is effective in the clinic

• In vivo combination investigational drug screening of rare tumor PDX models has demonstrated an unexpected number of active drug pairs that are now undergoing both therapeutic and mechanistic deconvolution which should form the basis of a public database that will support a wide range of novel clinical trials
Acknowledgements

Scientific Oversight
James H. Doroshow
Melinda G. Hollingshead
Michelle M. Gottholm Ahalt
Yvonne A. Evrard
Dianne Newton

Clinical Interface and QA/QC
Michelle A. C. Eugeni
Sergio Y. Alcoser
Linda L. Blumenauer
Alice Chen
Donna W. Coakley
Nicolette Craig
Nancy Moore
Malorie Morris
Melanie Simpson
Jessica Smith
Annette Stephens
Cindy Timme
Jenny Yingling

In vivo & In vitro Teams
Kaitlyn Arthur
Mariah Baldwin
Carrie Bonomi
Suzanne Borgel
Devynn Breen
John Carter
Kristen Cooley
Emily Delaney
Raymond Divelbiss
Kelly Dougherty
Kyle Georgi
Joe Geraghty
Marion Gibson
Tara Grinnage-Polley
Kelly Hedger
Sierra Hoffman
Candace Mallow
Chelsea McGlynn

Molecular Characterization Laboratory (MoCha)
Justine Mills
Tiffanie Miner
Jenna E. Moyer
Michael Mullendore
Matthew Murphy
Colleen Olkowski
Kevin Plater
Marianne Radzynsks
Nicki Scott
Luke H. Stockwin
Howard Stotler
Jesse Stottlemeyer
Savanna Styers
Debbie Trail
Shannon Uzelac
Anna Wade
Abigail Walke
Thomas Walsh

Mouse Imaging
Paula Jacobs
James Tatum
Joseph Kalen
Lilia Ileva
Nimit Patel
Lisa Riffle

Bioinformatics/Statistics
Larry Rubinstein
Mariam Konate
Julia Krushkal
Lisa McShane

The NCI expresses its deepest thanks to the patients, families, and clinical teams that make this effort possible.
PDMR NCI Patient-Derived Models Repository
An NCI Precision Oncology Initiative® Resource

https://pdmr.cancer.gov