Innovation and Current Topics in Oncology Drug Development: Industry Perspective

Eric H. Rubin
INNOVATION IN CLINICAL TRIALS - USE OF UMBRELLA/PLATFORM STUDIES TO EFFICIENTLY EVALUATE PREDICTIVE BIOMARKERS
Early and Lasting Example – ISPY 2 Platform

- Phase II, adaptively-randomized neoadjuvant breast cancer trial
 - Initiated in 2010
 - Goal is to identify drugs/combinations to take to phase III

- Simultaneous experimental arms
 - Match therapies with breast cancer subtypes
 - Comparator: standard neoadjuvant therapy (T-AC)
 - Endpoint: pathologic complete response (pCR)
 - Endpoint is assessed in 10 pre-specified “biomarker signatures”: HR, HER2, and Mammaprint

- Adaptive randomization minimizes number of patients needed to determine efficacy for a particular biomarker subgroup

- “Graduation” for efficacy = reaching threshold predictive probability of success in a subsequent phase III trial of 300 patients

https://www.ispytrials.org/i-spy-platform/i-spy2
1400 patients enrolled
15 agents completed evaluation
I-SPY2 Example - Pembrolizumab Combination Graduated in all HER2- signatures, both HR+ and Triple Negative

<table>
<thead>
<tr>
<th>Signature</th>
<th>Estimated pCR Rate (95% Probability Interval)</th>
<th>Probability Pembro Superior to Control</th>
<th>Predictive Probability of Success in Phase 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pembro</td>
<td>Control</td>
<td></td>
</tr>
<tr>
<td>HER2-</td>
<td>0.44 (0.33 – 0.55)</td>
<td>0.17 (0.11 – 0.23)</td>
<td>>0.999</td>
</tr>
<tr>
<td>HR-HER2-</td>
<td>0.60 (0.44 – 0.75)</td>
<td>0.22 (0.13 – 0.30)</td>
<td>>0.999</td>
</tr>
<tr>
<td>HR+HER2-</td>
<td>0.30 (0.17 – 0.43)</td>
<td>0.13 (0.07 – 0.19)</td>
<td>0.996</td>
</tr>
</tbody>
</table>

UMBRELLA STUDY EXAMPLE 2 - USING A CLINICAL-GENOMICS DATABASE TO SELECT COMBINATION TARGETS FOR PEMBROLIZUMAB
Tumor Mutational Burden and an Inflamed Gene Expression Profile Used to Identify Targets for Specific Tumor Subgroups

- Evaluated pre-treatment biopsies taken from >300 patients treated with pembrolizumab, including 22 cancer types
- Using training and validation approach, evaluated ~40 modules of pathway gene signatures, each consisting of ~100-200 genes
- 4 pathway gene signatures had distinct patterns in relation to T-cell inflamed GEP and TMB status
- These upregulated pathways represent potential resistance mechanisms and thus combination approaches
- Different combinations may benefit different patients according to GEP/PD-L1 and TMB status

Evaluation of Optimal Pembrolizumab Combinations for Individual NSCLC Patients - KeyImPaCT (Keynote-495)

ClinicalTrials.gov Identifier: NCT03516981
INNOVATION IN CLINICAL TRIALS - APPROACHES TO ENABLE RAPID DEVELOPMENT IN ADVANCED CANCER POPULATIONS

1. Approach to defining a patient population refractory to immunotherapy
2. Use of external data to support single arm submissions
How to Define an Anti-PD-1 Refractory Population?

• “Pseudoprogression” can confound characterization of a refractory population
• Friends of Cancer Research Annual Meeting 2019: “Immuno-Oncology Drug Development for Patients with Disease Progression After Initial anti-PD-(L)1 Therapy”
• Among 6 sponsors, 3 used a harmonized definition of refractory disease within the company
• Important considerations:
 – dose or length of anti-PD-(L)1 therapy that was used before disease progression
 – confirming progression of disease, including the type of scan, and the timing at which this scan would be done
 – timing of progression in relation to last dose of anti-PD-(L1)1 therapy and most recent treatment

Example: First in Human Study for Pembrolizumab Keynote-001

- Initiated in 2011 - 3+3 dose escalation with expansion cohort in melanoma, estimated sample size 32
- Striking responses observed in initial melanoma patients enrolled in dose escalation cohort
 - Led to increase in expansion cohort sample size to 60, including patients who progressed on ipilimumab

54-yr-old male with desmoplastic melanoma, progressed on ipilimumab

Hamid et al NEJM, 2013
Approach to Defining an Ipilimumab-Refractory Cohort

• Given preliminary evidence of activity in patients who progressed on ipi, added ipi-refractory cohort B2 to evaluate efficacy in a strictly defined population with high unmet need
 – Discussed cohort design with FDA to allow for potential accelerated approval
 – To address concern over pseudoprogression, required previous treatment with at least two doses of ipilimumab 3 mg/kg or higher administered every 3 weeks
 – Confirmed disease progression using immune-related response criteria within 24 weeks of the last dose of ipilimumab (confirmatory CT scan required)

• Randomized cohorts to confirm recommended dose of 2 mg/kg (vs 10 mg/kg) Q3W
• 80 ipilimumab-refractory patients at each dose
 – 85% power to detect a 15% difference in ORR between the two doses at 10% type 1 error (one-sided) when the ORR in the inferior group was 10%

• ORR 26% for both doses, median duration of response not reached at time of analysis (median follow-up 8 months)

Robert et al., Lancet 2014
First Approval of Pembrolizumab in an Ipilimumab-Refractory Population

• On September 4, 2014, pembrolizumab (Keytruda) was granted accelerated approval for the treatment of patients with unresectable or metastatic melanoma with disease progression following treatment with ipilimumab (Yervoy) and, in BRAF V600 mutation–positive patients after treatment with a BRAF inhibitor.
Enfortumab Vedotin: Nectin-4 Targeted Therapy

Enfortumab vedotin (ASG-22ME) is an investigational agent, and its safety and efficacy have not been established.

Enfortumab vedotin is being developed in collaboration with Astellas Pharma Inc. ©2019 Seattle Genetics, Inc. All rights reserved.

Petrylak DP, et al. J Clin Oncol 37, 2019 (suppl; abstr LBA4505)

NOT FOR DISTRIBUTION OR FOR PROMOTIONAL USE. MAY CONTAIN INFORMATION ON INVESTIGATIONAL AGENTS OR USES. NOT INTENDED TO CONVEY EFFICACY OR SAFETY PRIOR TO APPROVAL BY HEALTH AUTHORITIES.
EV-201: Single-Arm, Pivotal Phase 2 Trial

Cohort 1
Prior PD-1/L1 inhibitor and platinum-based therapy
Enrollment completed July 2018 N=128

Cohort 2
Prior PD-1/L1 inhibitor, platinum naive, cisplatin ineligible
Enrollment ongoing

Enfortumab vedotin
1.25 mg/kg IV on days 1, 8, and 15 of each 28-day cycle

Primary endpoint:
ORR per RECIST v1.1 as determined by BICR

Select secondary endpoints:
DOR
PFS
OS
Safety

Screening and enrollment
51 sites globally
Previously treated locally advanced or metastatic urothelial cancer

1 3 patients did not receive enfortumab vedotin treatment: one each due to clinical deterioration, patient decision, and low hemoglobin after enrollment
BICR=blinded independent central review; DOR=duration of response; PD-1=programmed cell death protein 1; PD-L1=programmed death-ligand 1; ORR=objective response rate; OS=overall survival; PFS=progression-free survival
Petrylak DP, et al. J Clin Oncol 37, 2019 (suppl; abstr LBA4505)
EV-201: Cohort 1 Objective Response Rate with Enfortumab Vedotin

<table>
<thead>
<tr>
<th>ORR per RECIST v 1.1 assessed by BICR</th>
<th>Patients (N=125) n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confirmed objective response rate</td>
<td></td>
</tr>
<tr>
<td>95% confidence interval<sup>1</sup></td>
<td>55 (44)</td>
</tr>
<tr>
<td></td>
<td>(35.1, 53.2)</td>
</tr>
<tr>
<td>Best overall response per RECIST (v. 1.1)</td>
<td></td>
</tr>
<tr>
<td>Complete response</td>
<td>15 (12)</td>
</tr>
<tr>
<td>Partial response</td>
<td>40 (32)</td>
</tr>
<tr>
<td>Stable disease</td>
<td>35 (28)</td>
</tr>
<tr>
<td>Progressive disease</td>
<td>23 (18)</td>
</tr>
<tr>
<td>Not evaluable<sup>2</sup></td>
<td>12 (10)</td>
</tr>
</tbody>
</table>

¹ Computed using the Clopper-Pearson method

² Includes 10 patients who discontinued study prior to post-baseline response assessment, 1 patient who had uninterpretable post-baseline assessment, and 1 patient whose post-baseline assessment did not meet the minimum interval requirement for stable disease

Petrylak DP, et al. J Clin Oncol 37, 2019 (suppl; abstr LBA4505)
EV-201: Cohort 1 Duration of Response with Enfortumab Vedotin

Median duration of response: 7.6 mo (range: 0.95–11.30+)
44% of responders still being followed

Median time to response: 1.8 mo (range: 1.2–9.2)
Most responses identified at first assessment

Petrylak DP, et al. J Clin Oncol 37, 2019 (suppl; abstr LBA4505)
First Approval of Enfortumab Vedotin in a PD-(L)1-Exposed Population

• On December 18, 2019, the Food and Drug Administration granted accelerated approval to enfortumab vedotin-ejfv (PADCEV) for adult patients with locally advanced or metastatic urothelial cancer who have previously received a programmed death receptor-1 (PD-1) or programmed death-ligand 1 (PD-L1) inhibitor, and a platinum-containing chemotherapy in the neoadjuvant/adjuvant, locally advanced or metastatic setting.
Use of External Data to Support Single Arm Submissions
Pembrolizumab + Lenvatinib Example

• Translational data support combination studies of pembrolizumab with anti-angiogenesis agents such as lenvatinib
• KEYNOTE-146/Study 111 - basket study of pembrolizumab + lenvatinib combination
 – endometrial
 – renal
 – NSCLC
 – urothelial
 – SCCHN
 – melanoma
KEYNOTE-146 Study Design

Phase 2, Open-label, Single-arm Study (NCT02501096)

Key Eligibility Criteria
- Aged ≥18 years
- Pathologically confirmed and metastatic endometrial carcinoma
- ≤2 Prior systemic therapies
- Measurable disease by irRECIST
- ECOG performance status ≤1
- Life expectancy ≥12 weeks

Lenvatinib
20 mg/day (oral)
+ Pembrolizumab
200 mg Q3W (IV)

Primary End Point*
- ORR at Week 24

Key Secondary End Points*
- Overall ORR
- DOR
- PFS
- OS
- DCR
- CBR
- Safety and tolerability

Prespecified Exploratory End Points
- Independent imaging review per irRECIST and RECIST v1.1
- Antitumor activity by PD-L1 status

Post Hoc Exploratory Analysis
- Antitumor activity by tumor histology
- Antitumor activity by MSI status

*Tumor responses for primary and secondary end points were assessed by the investigator per irRECIST.
Response in Endometrial Cancer
(Independent Imaging Review; RECIST version 1.1)

<table>
<thead>
<tr>
<th>Response Category</th>
<th>Total (n = 108)a</th>
<th>Not MSI-H or dMMR (n = 94)</th>
<th>MSI-H/dMMR (n = 11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best overall response, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete response</td>
<td>11 (10.2)</td>
<td>10 (10.6)</td>
<td>1 (9.1)</td>
</tr>
<tr>
<td>Partial response</td>
<td>33 (30.6)</td>
<td>26 (27.7)</td>
<td>6 (54.5)</td>
</tr>
<tr>
<td>Stable disease</td>
<td>42 (38.9)</td>
<td>38 (40.4)</td>
<td>3 (27.3)</td>
</tr>
<tr>
<td>Progressive disease</td>
<td>14 (13.0)</td>
<td>12 (12.8)</td>
<td>1 (9.1)</td>
</tr>
<tr>
<td>Not evaluable</td>
<td>8 (7.4)</td>
<td>8 (8.5)</td>
<td>0</td>
</tr>
<tr>
<td>Objective response rate</td>
<td>44 (40.7)</td>
<td>36 (38.3)b</td>
<td>7 (63.6)</td>
</tr>
<tr>
<td>(complete response + partial response), n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95% CIc</td>
<td>31.4, 50.6</td>
<td>28.5, 48.9</td>
<td>30.8, 89.1</td>
</tr>
<tr>
<td>Duration of response (months), median (range)d</td>
<td>14.8</td>
<td>NE</td>
<td>NE</td>
</tr>
<tr>
<td></td>
<td>(1.2+, 35.6+)</td>
<td>(1.2+, 33.1+)</td>
<td>(2.1+, 35.6+)</td>
</tr>
</tbody>
</table>

a The MSI or MMR status was not available for 3 patients; b As found in the United States Prescribing Information; c 95% CIs were calculated with the Clopper-Pearson method; d Duration of response was estimated with the Kaplan-Meier method.
Percentage Change in Sum of Diameters of Target Lesions at Postbaseline Nadir
(Independent Imaging Review; RECIST version 1.1)

Maximum tumor shrinkage
• $>0\% = 72/84$ (85.7%)
• $\geq 50\% = 26/84$ (31.0%)
• $\geq 75\% = 13/84$ (15.5%)

$n = $ the number of previously treated not MSI-H or dMMR patients with both baseline and at least 1 postbaseline target lesion assessment.
Kaplan-Meier Plot (Independent Imaging Review; RECIST version 1.1): Duration of Response

Duration of response was estimated with the Kaplan-Meier method, and 95% CIs were calculated with a generalized Brookmeyer and Crowley method.
Comparison to External Monotherapy Endometrial Cancer Cohorts

<table>
<thead>
<tr>
<th>Study</th>
<th>Population (n)</th>
<th>ORR; 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>KN146 lenva+pembro</td>
<td>Non-MSI-H (n=94)</td>
<td>36%; (28.5, 48.9); 10 CR</td>
</tr>
<tr>
<td>KN146 lenva+pembro</td>
<td>MSI-H (n=11)</td>
<td>63.6%</td>
</tr>
<tr>
<td>Lenvatinib monotherapy (Study 204, NCT01111461)</td>
<td>MSI-H status not determined; (n=133)</td>
<td>14.3%; (8.8, 21.4); 1 CR</td>
</tr>
<tr>
<td>Pembrolizumab monotherapy KEYNOTE-158- Cohort D (NCT02628067)</td>
<td>Non-MSI-H (n=90)</td>
<td>7.8%; (3.2, 15.4); 0 CR</td>
</tr>
<tr>
<td>Pembrolizumab monotherapy KEYNOTE-158</td>
<td>MSI-H (n=49)</td>
<td>57.1%; (42.2, 71.2); 8 CR</td>
</tr>
</tbody>
</table>
Approval of Lenvatinib + Pembrolizumab Combination

- Several innovative aspects to the study and regulatory interactions
- FDA, Australian Therapeutic Goods Administration, and Health Canada granted simultaneous review decisions in all 3 countries on Sept 17, 2019
- Lenvatinib plus pembrolizumab was granted accelerated approval for the treatment of advanced endometrial carcinoma that is not MSI-H or dMMR
- Patients must have had disease progression following prior systemic therapy and must not be candidates for curative surgery or radiation
SIMPLIFICATION AND HARMONIZATION OF COMPANION DIAGNOSTICS DEVELOPMENT

1. PD-L1 IHC
2. Tumor mutational burden (TMB)
Multiple FDA-Approved PD-L1 IHC Assays and Cutoffs: 22-C3, 28-8, SP-263, and SP-142 Assays

<table>
<thead>
<tr>
<th>Agent</th>
<th>Pembrolizumab</th>
<th>Nivolumab</th>
<th>Durvalumab</th>
<th>Atezolizumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostic Platform</td>
<td>Dako</td>
<td></td>
<td>Ventana</td>
<td></td>
</tr>
<tr>
<td>Antibody</td>
<td>22-C3</td>
<td>28-8</td>
<td>SP-263</td>
<td>SP-142</td>
</tr>
<tr>
<td>Cut-off(s) being tested</td>
<td>TC(^1) 1%, 50% CPS(^3) 1, 10</td>
<td>TC 1%, 5% or 10%</td>
<td>TC(^1) 25%</td>
<td>TC(^1) or IC(^2) 1%, 5%, 10%</td>
</tr>
</tbody>
</table>

1) TC = tumor cell staining.
2) IC = infiltrating immune cell staining
3) Combined positive score (tumor and immune cell staining)
PD-L1 IHC Harmonization Effort – Blueprint Project

ORIGINAL ARTICLE

PD-L1 Immunohistochemistry Assays for Lung Cancer: Results from Phase 1 of the Blueprint PD-L1 IHC Assay Comparison Project

Fred R. Hirsch, MD, PhD, a,b,c Abigail McElhinny, PhD, c,d Dave Stanforth, MBA, d James Ranger-Moore, PhD, e Malinika Jansson, MA, a Karina Kulangara, PhD, a,b,b William Richardson, BA, b Penny Towne, BS, MBA, d Debra Hanks, MD, d Bharathi Vennapusa, MD, f Amita Mistry, MD, f Rasika Kalamaygam, PhD, f,g Steve Averbuch, MD, f James Novotny, PhD, f Eric Rubin, MD; Kenneth Emancipator, MD, a Ian McCaffrey, PhD, f,h J. Andrew Williams, PhD, f Jill Neinker, PhD, f John Longshore, PhD, f Ming Sound Tsao, MD, f

Goals:

1. Compare analytical performance of 4 assays (22C3, 28-8, SP142, SP263) used as the staining protocols in corresponding clinical trials
2. Compare the treatment-determining scoring algorithm developed for each assay and used in clinical trials

AACR
AstraZeneca
Bristol-Myers Squibb
Dako/Agilent
Genentech/Roche
IASLC
MSD
Ventana/Roche Tissue Diagnostics
PD-L1 IHC Harmonization Effort – Blueprint Project

PD-L1 expression on tumor cells

Conclusion 1: 3 assays showed similar staining characteristics for PD-L1 staining on tumor cells, but SP142 comparatively showed less tumor cells stained.
PD-L1 IHC Harmonization Effort – Blueprint Project

PD-L1 expression on immune cells

Conclusion 2: All four assays showed immune cell staining, but with greater variability than tumor cell staining.

Each dot represents the mean score of 3 pathologists.
Harmonization of assays: Overall percent agreement when assays are applied to clinical cut-off of other assays

<table>
<thead>
<tr>
<th>Assay clone used for staining</th>
<th>Number of cases and overall percentage of agreement (concordant with index assay scoring algorithm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>22C3</td>
</tr>
<tr>
<td>22C3</td>
<td>38/38</td>
</tr>
<tr>
<td>28-8</td>
<td>36/38</td>
</tr>
<tr>
<td>SP142</td>
<td>24/38</td>
</tr>
<tr>
<td>SP263</td>
<td>34/38</td>
</tr>
</tbody>
</table>
TMB as a Predictive Biomarker for Immune Checkpoint Inhibitors

• TMB measures mutations in a tumor (per megabase)
 • Used as a surrogate of neoantigen load
• High levels of TMB (TMB-high) have been correlated with efficacy of antibodies targeted to immune checkpoints CTLA-4, PD-1, and PD-L1
• High microsatellite instability (MSI-H) is a subtype of TMB-high
 • Pembrolizumab provides durable responses in patients with MSI-H cancers and is approved in several countries, including the US, Japan, and Australia, for the treatment of previously treated MSI-H advanced solid tumors

Multiple Assays under Development for Evaluation of Tumor Mutational Burden

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Panel name</th>
<th># genes</th>
<th>Total region covered (Mb)</th>
<th>TMB region covered (Mb)</th>
<th>Type of exonic mutations included in TMB estimation</th>
<th>Published performance characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT Genomics</td>
<td>ACTOnco+</td>
<td>440</td>
<td>1.8</td>
<td>1.12</td>
<td>non-synonymous*, synonymous</td>
<td>NA</td>
</tr>
<tr>
<td>AstraZeneca</td>
<td>A2600</td>
<td>607</td>
<td>1.72</td>
<td>1.72</td>
<td>non-synonymous, synonymous</td>
<td>NA</td>
</tr>
<tr>
<td>Caris</td>
<td>SureSelect XT</td>
<td>592</td>
<td>1.60</td>
<td>1.40</td>
<td>non-synonymous</td>
<td>Vanderwalde et al., 2018</td>
</tr>
<tr>
<td>Foundation Medicine</td>
<td>FoundationOne CDx™+</td>
<td>324</td>
<td>2.20</td>
<td>0.80</td>
<td>non-synonymous, synonymous</td>
<td>Frampton et al., 2013, Chalmers et al., 2017, Fabrizio et al., 2018, U.S. FDA SSED</td>
</tr>
<tr>
<td>Guardant Health</td>
<td>GuardantOMNI®</td>
<td>500</td>
<td>2.15</td>
<td>1.00</td>
<td>non-synonymous, synonymous</td>
<td>Quinn et al., 2018</td>
</tr>
<tr>
<td>Illumina</td>
<td>TSOS500 (TruSight Oncology 500)</td>
<td>523</td>
<td>1.97</td>
<td>1.33</td>
<td>non-synonymous, synonymous</td>
<td>NA</td>
</tr>
<tr>
<td>Memorial Sloan Kettering Cancer Center</td>
<td>MSK-IMPACT™%</td>
<td>468</td>
<td>1.53</td>
<td>1.14</td>
<td>non-synonymous</td>
<td>Cheng et al., 2015, Zehir et al. 2017, U.S. FDA</td>
</tr>
<tr>
<td>NeoGenomics</td>
<td>NeoTYPE® Discovery Profile for Solid Tumors</td>
<td>372</td>
<td>1.10</td>
<td>1.03</td>
<td>non-synonymous, synonymous</td>
<td>NA</td>
</tr>
<tr>
<td>Personal Genome Diagnostics</td>
<td>PGDx elio tissue complete</td>
<td>507</td>
<td>2.20</td>
<td>1.33</td>
<td>non-synonymous, synonymous</td>
<td>Wood et al., 2018</td>
</tr>
<tr>
<td>QIAGEN</td>
<td>QIAseq TMB panel</td>
<td>486</td>
<td>1.33</td>
<td>1.33</td>
<td>non-synonymous, synonymous</td>
<td>NA</td>
</tr>
<tr>
<td>Thermo Fisher Scientific</td>
<td>Oncomine™ Tumor Mutation Load Assay</td>
<td>409</td>
<td>1.70</td>
<td>1.20</td>
<td>non-synonymous</td>
<td>Chaudhary et al., 2018 & Endris et al., 2018</td>
</tr>
</tbody>
</table>

- Various studies evaluating TMB as a predictive marker for IO treatments have used different scoring approaches and cutoffs, making direct comparisons of the assays difficult.
- Ongoing effort led by the Friends of Cancer Research, with inclusion of FDA, and several Pharma and Diagnostics companies, to create a set of standards for the calculation, validation, and reporting of TMB.
Friends of Cancer Research TMB Harmonization Project

- Involves several diagnostic, academic, and pharma groups, NCI, FDA
- Identified a set of reference standards consisting of 10 well-characterized human-derived lung and breast tumor-normal matched cell lines
- Compared the correlation between TMB scores calculated using whole exome sequencing (WES) and individual diagnostic company gene panels
- The set of reference standards spanned a clinically meaningful TMB range (4.3 to 31.4 mut/Mb)
- Across laboratories, there was a good correlation between panel-TMB and WES-TMB.
 - Spearman R values ranged from 0.56-0.97 with slopes ranging from 0.58-1.16
 - Some laboratories had consistently over- or underestimated TMB values
- These results support the need for alignment to a reference control
- Future studies aim to validate reference standard material using formalin-fixed paraffin-embedded human tumor samples

https://www.focr.org/blog/engaging-innovation/tmb-harmonization-working-group-meeting

Merino, et al; J Clin Oncol 37, 2019 (suppl; abstr 2624)
Evaluation of TMB in KEYNOTE-158 (NCT02628067): Phase 2 Multicohort Study of Pembrolizumab for Select Previously Treated Advanced Solid Tumors

Patients
- Unresectable and/or metastatic cancer
- Progression on or intolerance to standard therapy
- ECOG PS 0 or 1
- ≥1 measurable lesion
- Evaluable tumor sample for biomarker assessment

Pembrolizumab
- 200 mg IV Q3W
- for 2 years or until PD, intolerable toxicity, or withdrawal

Included cancers
- Cohort A: anal squamous cell carcinoma
- Cohort B: biliary adenocarcinoma
- Cohort C: well or moderately differentiated neuroendocrine tumors
- Cohort D: endometrial carcinoma
- Cohort E: cervical squamous cell carcinoma
- Cohort F: vulvar squamous cell carcinoma
- Cohort G: small-cell lung cancer
- Cohort H: malignant pleural mesothelioma
- Cohort I: papillary or follicular thyroid carcinoma
- Cohort J: salivary gland carcinoma
- Cohort K: MSI-H solid tumors, excluding colorectal cancer (cohort excluded from this analysis)

Clinically stable patients could remain on pembrolizumab until PD was confirmed on a second imaging assessment performed ≥4 weeks later. Patients who completed pembrolizumab treatment with SD or better and subsequently experienced PD were eligible to resume pembrolizumab for ≤1 year.
KN-158 End Points and Assessments

Protocol-Specified Study End Points
- Primary: ORR assessed per RECIST v1.1 by independent central review
- Secondary: DOR and PFS assessed per RECIST v1.1 by independent central review, OS, safety
- Exploratory: relationship between TMB and efficacy

Study Assessments
- Response: assessed every 9 weeks for the first 12 months and every 12 weeks thereafter
- AEs and laboratory abnormalities: monitored throughout treatment and for 30 days (90 days for serious AEs) thereafter
 - Graded per NCI CTCAE version 4.0

Biomarker Assessments
- TMB
 - Assessed in FFPE tumor samples (tissue TMB, or tTMB) using the FoundationOne CDx™ assay (version 3.3)
 - TMB-high defined as ≥10 mut/Mb (prespecifieda)
- MSI
 - Determined retrospectively by PCR of 5 mononucleotide locib performed at a central laboratory
 - MSI-H defined as allelic loci size shifts in ≥2 of 5 analyzed loci

aCutpoint was prespecified before the TMB results were correlated with outcomes.
bBAT25, BAT26, NR21, NR24, and Mono27.
Confirmed Best Overall Response
(RECIST v1.1, Independent Central Review)

<table>
<thead>
<tr>
<th>Best Response</th>
<th>tTMB-High Excl. MSI-H (N = 85)</th>
<th>Non−tTMB-High (N = 652)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR</td>
<td>4.0%</td>
<td>3.5%</td>
</tr>
<tr>
<td>PR</td>
<td>26.3%</td>
<td>23.5%</td>
</tr>
<tr>
<td>SD</td>
<td>14.1%</td>
<td>15.3%</td>
</tr>
<tr>
<td>Non-CR/ non-PD</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>PD</td>
<td>46.5%</td>
<td>48.2%</td>
</tr>
<tr>
<td>Not evaluable(^a)</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Not assessed(^b)</td>
<td>9.1%</td>
<td>9.4%</td>
</tr>
</tbody>
</table>

\(^a\)Patients who did not have a post-baseline imaging assessment evaluable for response. \(^b\)Patients who did not have post-baseline imaging.

Data cutoff date: December 6, 2018.
Confirmed ORR by Tumor Type (RECIST v1.1, Independent Central Review)

Bars are labelled with the number of participants with response out of the total number of participants with that tumor type.

Data cutoff date: December 6, 2018.
Relationship Between tTMB and PD-L1

Low correlation between tTMB and PD-L1 expression ($\rho = 0.18$)

Data cutoff date: December 6, 2018.
TMB Summary

• TMB-high status assessed in tumor tissue is associated with a clinically meaningful improvement in the efficacy of pembrolizumab monotherapy in participants with previously treated solid tumors.

• The benefit in the tTMB-high subgroup was not driven by MSI-H status, and responses were observed across tumor types.

• Median duration of response was not reached with a median follow-up of ~1 year.

• There was low correlation of tTMB and PD-L1 expression.

• The safety profile in the tTMB-high subgroup was tolerable and consistent with that previously observed for pembrolizumab monotherapy.

• Data suggest that tTMB may predict efficacy of pembrolizumab monotherapy in participants with previously treated advanced solid tumors.
Conclusions

- Innovative approaches should continue to be pursued to enable rapid drug development and access for advanced cancer populations
- Project Orbis is a good example of international regulatory collaboration that may facilitate patient access to new treatments
- Continued collaboration is needed to simplify use of predictive biomarkers, particularly where selection of a cutoff is required