

PLENARY SYMPOSIUM 9 CLINICAL BREAKTHROUGH WITH IMMUNOTHERAPY: HEAD & NECK CANCER

Marco C. Merlano

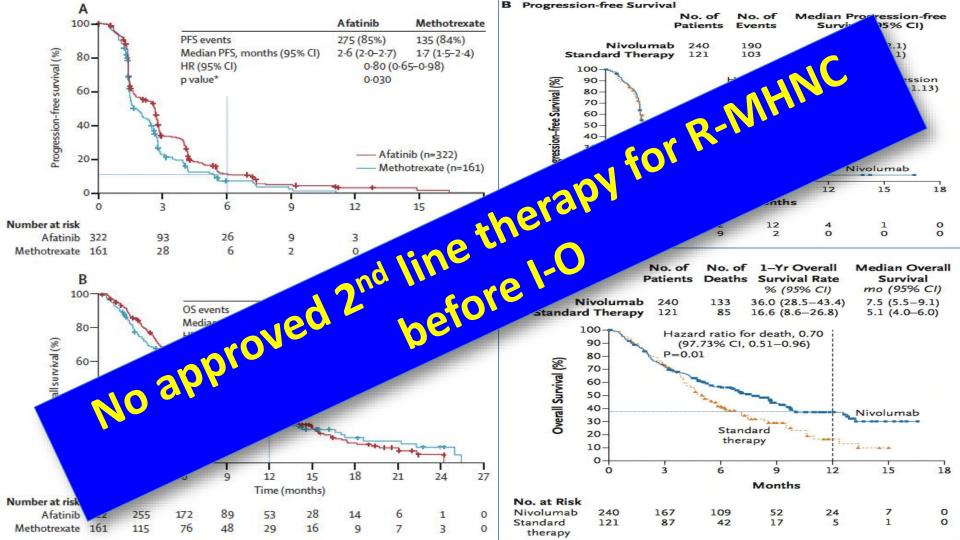
S. Croce & Carle Teaching Hospital - Cuneo &

Candiolo Cancer Center – Candiolo (Turin)

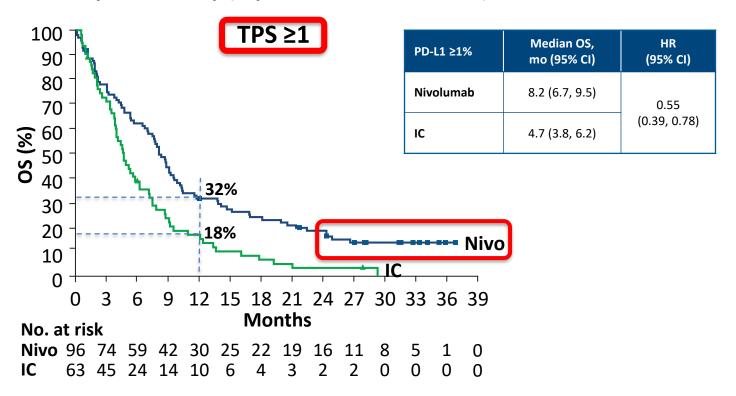
THE LEADING INTERNATIONAL CANCER IMMUNOTHERAPY CONFERENCE IN EUROPE

6TH EDITION APRIL 11-13, 2019 VIENNA, AUSTRIA

www.ltoc-conference.eu


Declaration of conflict of interest

Туре	Company
Employment full time/part time	None
Research Grant (P.I.; collaborator or consultant; pending and received grant)	Merck KGaA
Other research supports	None
Speaker Bureau/honoraria	MSD, BMS, Merck KGaA
Ownership interest (stock, stock-options, patent or intectual property)	Glaxo SK
Consultant/advisory board	MSD, BMS, Merck KGaA



Unexpected survival in a (small) proportion of pts with heavily pre-treated **RM-HNC** Very favourable toxic profile

OS in patients with tumor PD-L1 expression ≥1% (56% pts¹)

2-year follow-up (September 2017 data cutoff)

Soulières KN040 Treatment-Related AEs With Incidence ≥10% AACR 2018

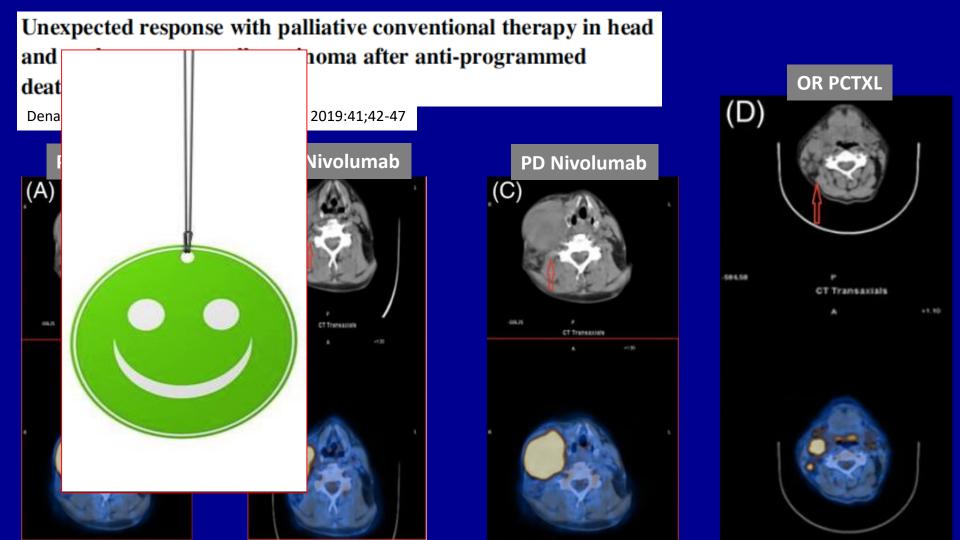
	Pembrolizumab (N = 246)		SOC (N = 234)	
Event, n (%)	Any Grade	Grade 3-5	Any Grade	Grade 3-5
Hypothyroidism	33 (13.4)	1 (0.4)	2 (0.9)	0
Fatigue	31 (12.6)	4 (1.6)	43 (18.4)	2 (0.9)
Diarrhea	20 (8.1)	4 (1.6)	24 (10.3)	1 (0.4)
Rash	19 (7.7)	1 (0.4)	34 (14.5)	1 (0.4)
Asthenia	18 (7.3)	1 (0.4)	28 (12.0)	4 (1.7)
Anemia	17 (6.9)	1 (0.4)	33 (14.1)	9 (3.8)
Nausea	12 (4.9)	0	29 (12.4)	1 (0.4)
Mucosal inflammation	9 (3.7)	1 (0.4)	30 (12.8)	5 (2.1)
Stomatitis	6 (2.4)	1 (0.4)	28 (12.0)	11 (4.7)
Neutrophil count decreased	3 (1.2)	1 ().4)	25 (10.7)	20 (8.5)
Alopecia	1 (0.4)	0	25 (10.7)	0

Any TRAE, n (%)

Select TRAEs, n (%)

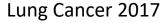
Fatigue Nausea Anemia **Asthenia**

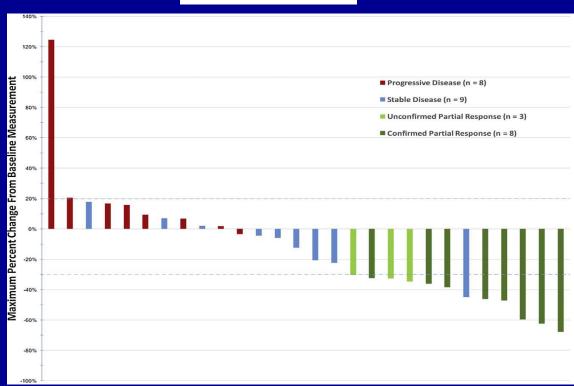
Skin **Endocrine** Gastrointestinal Hepatic **Pulmonary**

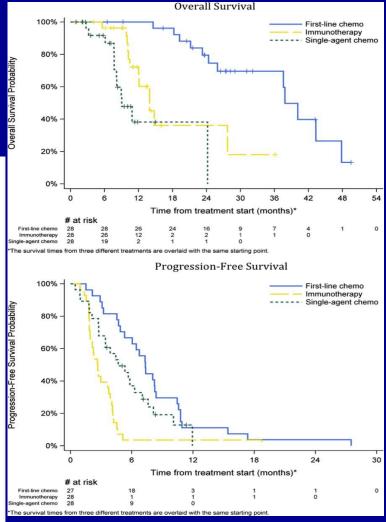

Renal

TRAEs in ≥15% of patients, n (%)

Hypersensitivity/infusion reactions


7)	
3)	
4)	
1)	
7)	
5)	


_ [Nivoluma	ab (n = 236)	IC (n =	111)
	Any grade	Grade 3–4	Any grade	Grade 3–4
	146 (61.9)	36 (15.3)	88 (79.3)	40 (36.0)
	37 (15.7)	5 (2.1)	20 (18.0)	3 (2.7)
	22 (9.3)	0	23 (20.7)	1 (0.9)
	12 (5.1)	3 (1.3)	19 (17.1)	6 (5.4)
	10 (4.2)	1 (0.4)	17 (15.3)	2 (1.8)
	40 (16.9)	0	14 (12.6)	2 (1.8)
	22 (9.3)	1 (0.4)	1 (0.9)	0
	20 (8.5)	1 (0.4)	17 (15.3)	2 (1.8)
	7 (3.0)	2 (0.8)	5 (4.5)	1 (0.9)
	7 (3.0)	2 (0.8)	1 (0.9)	0
	3 (1.3)	0	2 (1.8)	1 (0.9)
	3 (1.3)	0	2 (1.8)	1 (0.9)



Response rates to single-agent chemotherapy after exposure to immune checkpoint inhibitors in advanced non-small cell lung cancer

Gustavo Schvartsman^a, S. Andrew Peng^b, Giorgios Bis^c, J. Jack Lee^b, Marcelo F.K. Benveniste^d, Jianjun Zhang^e, Emily B. Roarty^e, Lara Lacerda^e, Stephen Swisher^f, John V. Heymach^e, Frank V. Fossella^{e,*,1}, William N. William^{e,*,1}

HNC - Subsequent therapy ASCO '18

Salvage Chemotherapy after Immunotherapy Background

Response to salvage therapy (control arm) ~ 6-10%

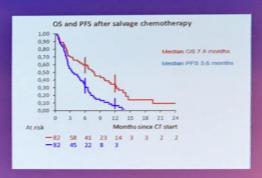
Checkmate-141

	Nivolumab (n = 240)	IC (n = 121)
ORR, % (95% CI)	13.3 (9.3, 18.3)	5.8 (2.4, 11.6)
Time to response, median (range), months	2.1 (1.8 to 7.4)	2.0 (1.9 to 4.6)
Duration of response, median (range), months	9.7 (2.8 to 32.8+)	4.0 (1.5+ to 11.3)

Ferris et al., AACR 2018

Keynote-040

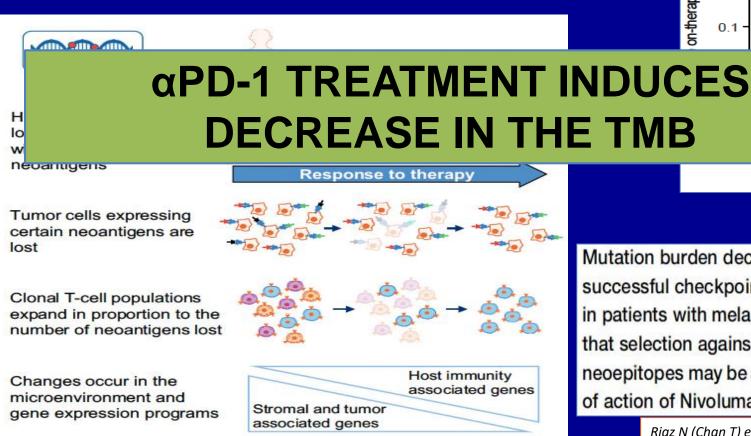
	ITT		
BestResponse, (%)	Pembro N = 247	SOC N = 248	
ORR	36 (14.6)	25 (10.1)	
CR	4 (1.6)	1 (0.4)	
PR	32 (13.0)	24 (9.7)	
SD	56 (22.7)	65 (26.2)	
PD	108 (43.7)	97 (39.1)	
NonCR/nonPD ^b	2 (0.8)	1 (0.4)	
Not evaluable or assessable ^c	45 (18.2)	60 (24.2)	


Soulieres et al., AACR 2018

PRESENTED BY: William N. William

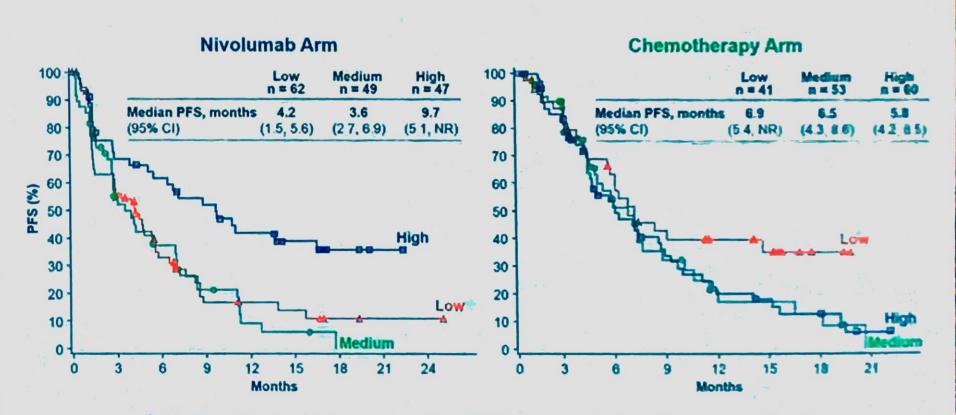
Salvage Chemotherapy after Immunotherapy

	N=82 (%)
Salvage chemotherapy Taxanes Platinum-based Cetuximab in combination Other	46 (56%) 30 (37%) 41 (50%) 12 (15%)
ECOG PS at SCT 0 1 2 3	11 (13%) 49 (60%) 21 (26%) 1 (1%)
Best response to SCT	
CR PR SD PD	3 (4%) 22 (27%) 22 (27%) 35 (42%)
Number of lines after ICI 1 2 ≥3	55 (66%) 22 (27%) 6 (7%)



Salieb et al., ASCO 2018

Tumor and Microenvironment Evolution during **Immunotherapy with Nivolumab**


Mutation burden decreases with successful checkpoint blockade therapy in patients with melanoma, suggesting that selection against mutant necepitopes may be a critical mechanism of action of Nivolumab.

Riaz N (Chan T) et al: Cell 2017;171:934-949

CD8

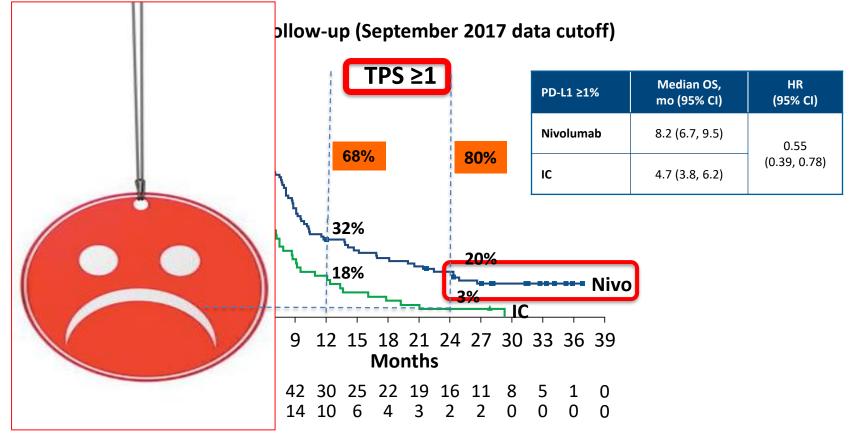
AACR 2017

PFS by Tumor Mutation Burden Tertile CheckMate 026 TMB Analysis: Nivolumab in First-line NSCLC

Data for patients with low and medium TMB were pooled in subsequent analyses

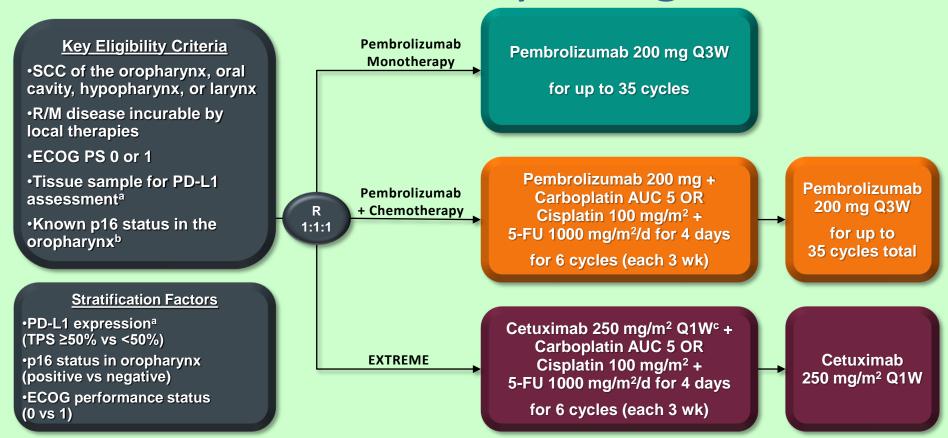
ACTIVITY

te 141	Keynote 040	
soc	Pembro	soc
1	4	1
6	32	24
114	211	223
	SOC 1 6	SOC Pembro 1 4 32


% (2.4 - 11.6)

14.6%

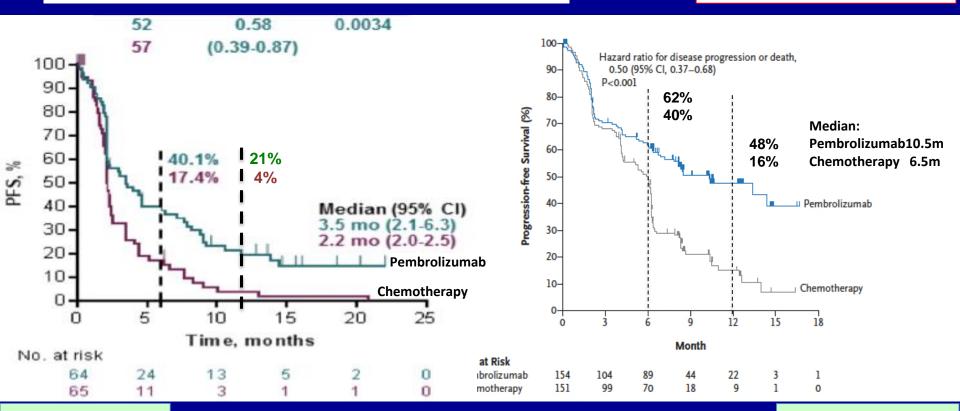
10.1%


ORR	AFATINIB	METHOTREXATE
CR	0	0
PR	33 (10%)	9 (6%)
No Resp	289	152

OS in patients with tumor PD-L1 expression ≥1% (56% pts¹)


1) PD-L1 available in 159/261 pts

KEYNOTE-048 Study Design (NCT02358031)


^aAssessed using the PD-L1 IHC 22C3 pharmDx assay (Agilent). TPS = tumor proportion score = % of tumor cells with membranous PD-L1 expression. ^bAssessed using the CINtec p16 Histology assay (Ventana); cutpoint for positivity = 70%. ^cFollowing a loading dose of 400 mg/m².

Overall Survival: P vs E, CPS ≥20 (42% pts)

PROGRESSION-FREE SURVIVAL

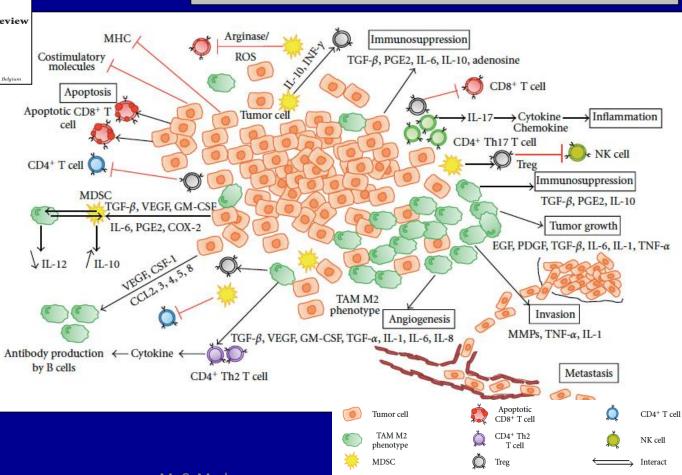
PD-L1 > 50% (TPS)

The Head and Neck Cancer evasion machinery

Review Article

Immune Suppression in Head and Neck Cancers: A Review

Anaëlle Duray,1 Stéphanie Demoulin,2 Pascale Hubert,2 Philippe Delvenne,2,3 and Sven Saussez1,4

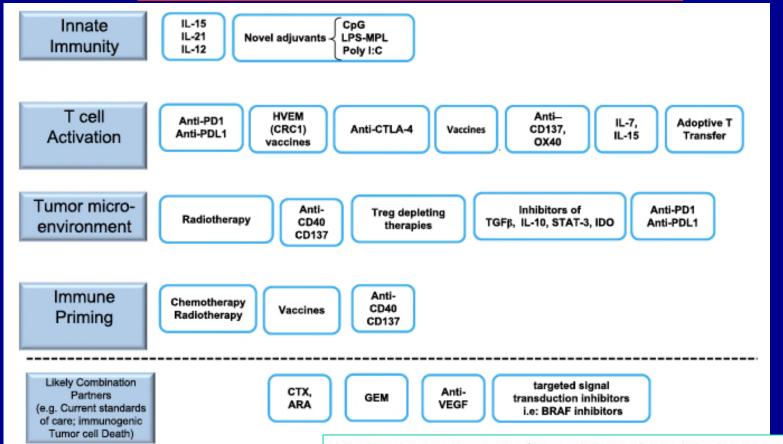

- Laboratory of Anatomy, Ficulty of Medicine and Pharmacy, University of Mon., 7000 Mons, Belgium

 *Department of Puthology, CHU, Start-Tibran, University of Liege, 2000 Liege, Belgium

 *Belgium National Fund for Scientific Research (FNRS), 1000 Brussels, Belgium

 *Department of One-Bhin-Laryanglogy, CHU Saint-Ferre, Universite Libre de Brusselles, 1000 Brussels, Belgium

- Disruption of Antigen Presenting Machinery
- High amount of TGF β
- High levels of galectin-1
- Abundance of Treg
- Production of VEGF, PGE2, IL-10
- **ΤΑΜ Φ Μ2**


CD8+ T cell

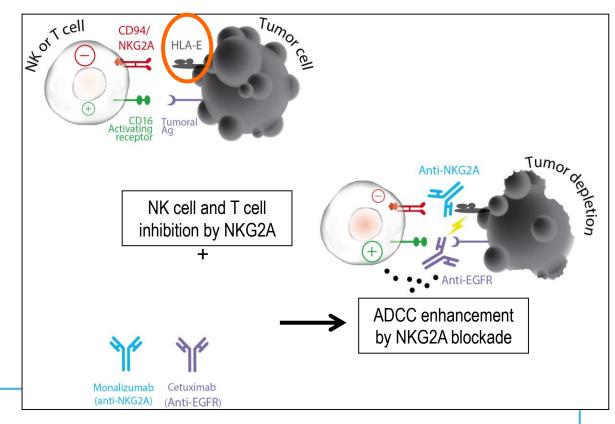
CD4+ Th17

T cell

Promote

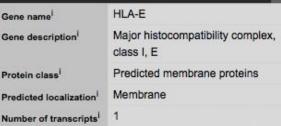
Combination therapy in H-NC

Forero et al. Journal of Translational Medicine 2012, 10:108


TARGETING NKG2A

Background

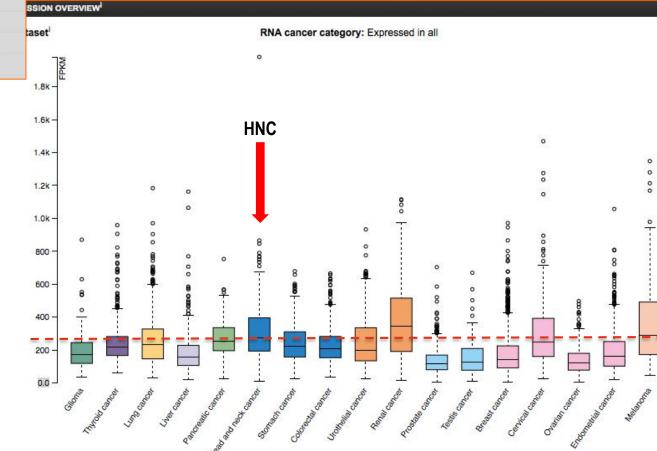
Monalizumab:


first-in-class humanized IgG_4 Targeting NKG2D on NK and tumor infiltrating CD8 $^{+}$.

blocks binding of CD94/NKG2A to HLA-E reducing inhibitory signaling and thereby unleashing NK and T cell responses.

Hypothesis:

Dual targeting with the combination of monalizumab and cetuximab will provide greater antitumor activity than cetuximab alone



GENERAL INFORMATION

78 – 83% of HNC express HLA-E¹

1) Silva TG et al 2012

Study DESIGN

- Multicenter single arm study to evaluate cetuximab plus monalizumab
- Cohort expansion in R/M SCCHN (NCT02643550)

Key eligibility criteria

- R/M SCCHN, HPV(+) or HPV(-)
- PD after platinum-based CT
- Maximum of 2 prior systemic regimens for R/M disease
- Prior IO allowed*

Treatment

Monalizumab (10mg/kg Q2W) + cetuximab

(approved dosage)

until progression or unacceptable toxicity

Primary objective

- ORR (RECIST 1.1)

Secondary objectives

- Safety
- DoR, PFS, OS

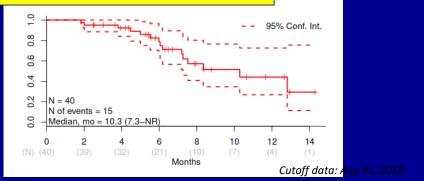
^{*} prior cetuximab allowed if in locally advanced disease with no PD for at least 4 months

KEY RESULTS of monalizumab and cetuximab

KEY RESULTS	n (%) CI			
Complete Response (CR)	1 (2.5%)			
Partial response (PR)*	10 (25%)			
Stable disease	22 (55%)			
Overall Response Rate (ORR)	2 mOS	(m		
Madia DEO	Monalizumab	10		

Extreme

CheckMate-141


	_	100	٦		
	st change from baseline (%)	20	_	C * * *	
	nge from b	0	_	* * * * * * * * * * * * * * * * * * *	
	st char	-50	, -	 Previous anti-PD(L)1 Previous Cetuximab 	*
m	on	th	s)		
10).3	(pł	าล	se II in second/third line)	
10).1	(pł	าล	ise III in first line)	-
7	7.7	(pł	าล	ise III multiple lines)	

Safety data:

Median PFS

Median OS

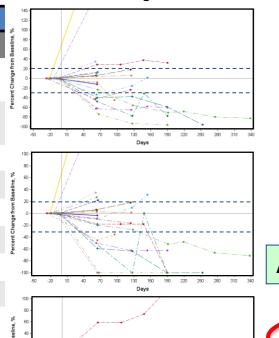
- Good safety profile of the combination
- No potentiation of the cetuximab related AEs by monalizumab

Best change of tumor size from baseline

Complete ResponsePartial ResponseStable DiseaseProgressive Disease

Targeting TLRs

PHASE 1B/2, OPEN LABEL, MULTICENTER STUDY OF INTRATUMORAL SD-101 IN COMBINATION WITH PEMBROLIZUMAB IN ANTI-PD-1 TREATMENT NAÏVE PATIENTS WITH RECURRENT OR METASTATIC HEAD AND NECK SQUAMOUS CELL CARCINOMA (HNSCC)


Abstract 1050PD

Ezra Cohen, et al.

EFFICACY

	8 mg	2 mg			
mITT patients, n*	22	2			
Objective response rate, n (%)	6 (27.3)				
95% confidence interval	(16, 56)				
Best overall response, n (%)					
Complete response	0				
Partial response	6 (27.3)				
Stable disease	4 (18.2)	2 (100)			
Progressive disease	10 (45.5)				
Time to response (months)					
Median (min, max)	2.1 (2.0, 4.2)				
Duration of response (months)					
Median (min, max)	3.6+ (0.0, 6.9)				

Percent Change From Baseline for Target Lesions: SD-101 8 mg

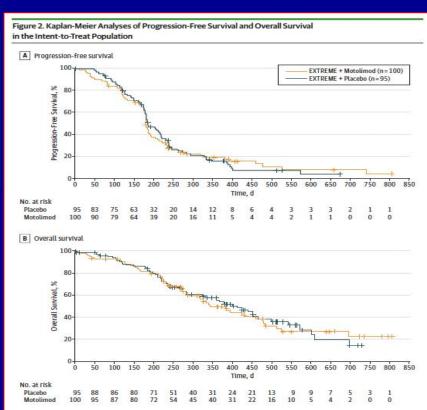
All Target Lesions

Injected Target Lesions

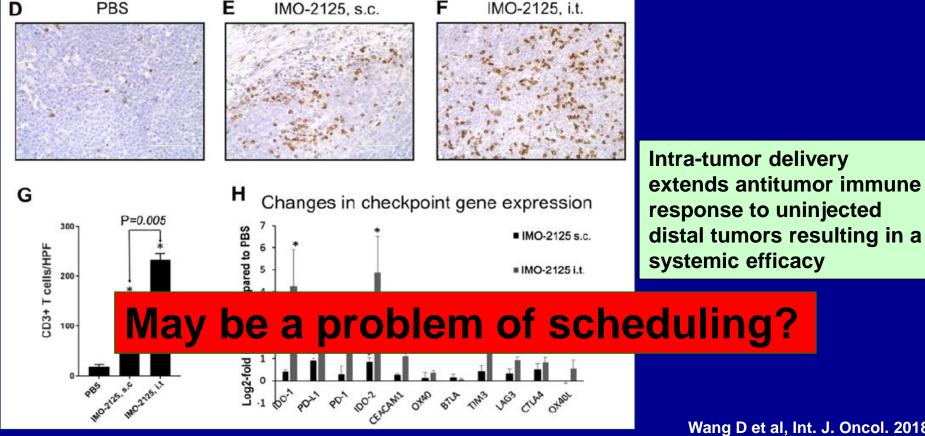
ABSCOPAL EFFECT!!!

Non-Injected Target Lesions

Cohen E, et al. Abstract 3560


- The combination of SD-101 and pembrolizumab was well tolerated, consistent with previous reports
 - No evidence of an increased incidence or severity of Aes and immune-related AEs over pembrolizumab monotherapy
 - AEs associated with SD-101 were mainly mild to moderate injection-site reactions and flu-like symptoms that were manageable with over-the-counter medications
- The combination therapy showed promising efficacy in patients with HNSCC, with an ORR of 27.3%
 - Responses were observed in both SD-101 injected and non-injected lesions
 - Responses were observed in both PD-L1 negative and positive tumors

JAMA Oncology | Brief Report


Effect of Adding Motolimod to Standard Combination Chemotherapy and Cetuximab Treatment of Patients With Squamous Cell Carcinoma of the Head and Neck The Active8 Randomized Clinical Trial

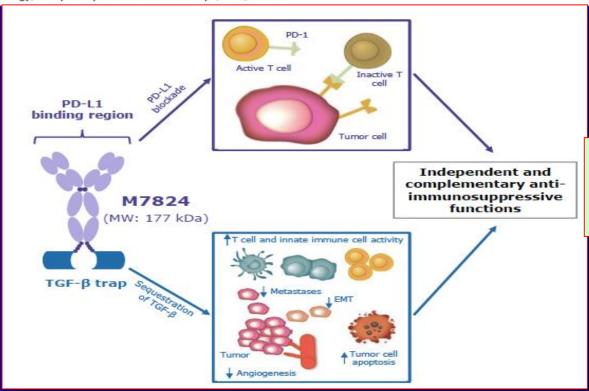
Robert L. Ferris, MD, PhD; Nabil F. Saba, MD; Barbara J. Gitlitz, MD; Robert Haddad, MD; Ammar Sukari, MD; Prakash Neupane, MD; John C. Morris, MD; Krzysztof Misiuklewicz, MD; Julie E. Bauman, MD, MPH; Moon Fenton, MD, PhD; Antonio Jimeno, MD; Douglas R. Adkins, MD; Charles J. Schneider, MD; Assuntina G. Sacco, MD; Kelsuke Shirai, MD; Daniel W. Bowles, MD; Michael Gibson, MD, PhD; Tobenna Nwizu, MD; Raphael Gottardo, PhD; Kristi L. Manjarrez, BS; Gregory N. Dietsch, PhD; James Kyle Bryan, MD; Robert M. Hershberg, MD, PhD; Ezra E. W. Cohen, MD

Methods
P-F-Cmab + six 21-day
cycles of weekly
subcutaneous motolimod
(3 mg/m2) or placebo.

TLR9 Agonist IMO-2125. s.c. = sub-cutaneous; i.t. = intra-tumor

Wang D et al, Int. J. Oncol. 2018

Targeting TME

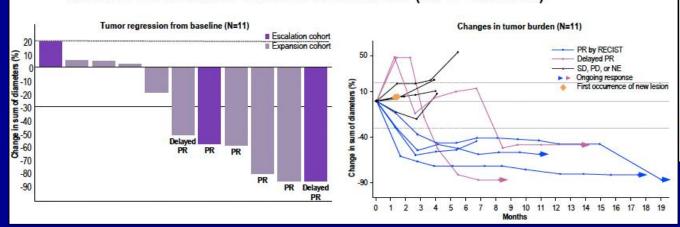


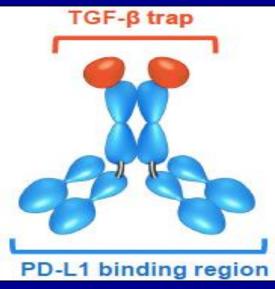
POINT OF VIEW 8 OPEN ACCESS

Novel TGF- β inhibitors ready for prime time in onco-immunology

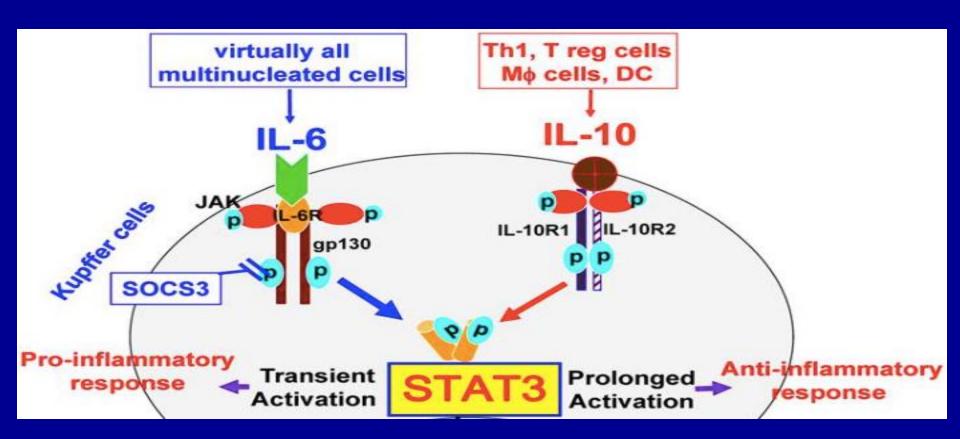
Armand de Gramonta, Sandrine Faivreb, and Eric Raymondc

^aAFR Oncology, Boulogne-Billancourt, France; ^bMedical Oncology, Hôpitaux Universitaires Paris Nord Val de Seine (HUPVNS), Université Paris 7, Paris, France; ^cMedical Oncology, Groupe Hospitalier Paris Saint-Joseph, Paris, France

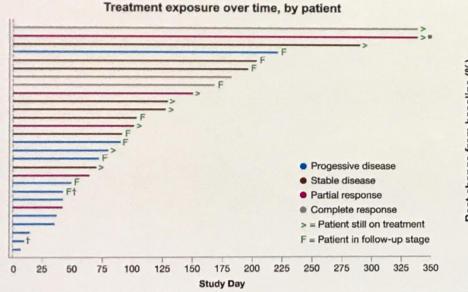


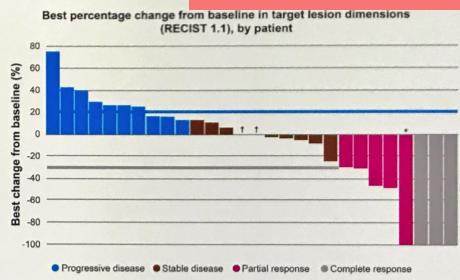

Double antiimmunosuppressive effects, but, possibly, also a reduced toxicity due to concentration in inflamed areas

M7824 (MSB0011359C), A BIFUNCTIONAL FUSION PROTEIN TARGETING TGF-β AND PD-L1, IN PATIENTS WITH ADVANCED SCCHN: RESULTS FROM A PHASE 1 COHORT


B.C. Cho¹, A. Daste², A. Ravaud², S. Salas³, N. Isambert⁴, E. McClay⁵, A. Awada⁶, C. Borelⁿ, L.S. Ojalvo⁶, C. Helwig⁶, P.A. Rolfe⁶, J.L. Gulley¹⁰, N. Penel¹¹

CLINICAL ACTIVITY BY INVESTIGATOR (HPV+ SCCHN)

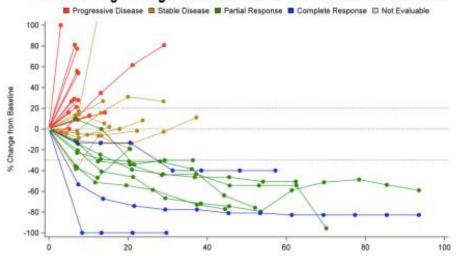



STAT-3

EXPOSURE AND BEST RESPONSE PLOTS BY PATIENT OVER TIME: AZD9150 + DURVALUMAB IN PD-(L)1 NAÏVE PATIENTS

Plots shows 28 patients who were evaluable at data cut-off date 20 July 2017, unvalidated data by best response. Each bar represents a subject in Arm B3. All RECIST CRs represented as -100% change.

*A CR in target lesions; †Only baseline tumour measurement available.


CR=complete response; PD-(L)1=programmed death-(ligand) 1; RECIST=Response Evaluation Criteria In Solid Tumors.

RESPONSE RATE DOUBLES WITH DANVATIRSEN + DURVALUMAB VS DURVALUMAB MONOTHERAPY IN PD-L1 NAIVE PATIENTS

Response rate, including complete responses in 2L+ immunotherapy treatment naive patients with

R/M HNSCC

Percent change in target lesions over time in 2L+ IO-naive R/M-HNSCC

Target lesions evaluated per RECIST v1.1. CR, complete response; IO, immuno-oncology; PR, partial response; RECIST, Response Evaluation Criteria in Solid Tumors.

Cohen E, et al. Presented at: European Society for Medical Oncology Annual Meeting; September 8-12, 2017; Madrid, Spain (abstract LBA45_PR).

Treatment	N	ORR (%)
sco	RES	
Durvalumab + danvatirsen	44ª	23% (3 CR, 7%; 7 PR, 16%)
Danvatirsen monotherapy	13b	0%
Durvalumab + AZD5069	21°	5% (1 PR)
OTHER S	STUDIES	
Durvalumab (CONDOR: PD-L1 low) ¹	65	9% (6 PR)
Durvalumab (HAWK: PD-L1 high) ²	111	16% (17 PR, 15%; 1 CR, 1%)
Nivolumab ³	240¹	13% (6 CR, 2.5%)
Pembrolizumab (all PD-L1, KEYNOTE-040) ⁴	247	14.6% (CR 1.6%)

Data cutoff: 12 July 2018

^{1.} Sui L, et al. Presented at: Multidisciplinary Head and Neck Cancers Symposium; February 15-17, 2018; Scottsdale, AZ (abstract 1).


^{2.} Zandberg DP, et al. Presented at ESMO 2017. Ann Onc. (2017) 28 (suppl_5): v372-v394. 10.1093/annonc/mdx374.

Ferris RL, et al. N Engl J Med. 2016;375:1858-1867.

SCORES 2L + RM HNSCC patients (Arm B3) SCORES 1L and 2L+ RM HNSCC patients (Arm B5)

SCORES 1L and 2L+ patients (Arm B4)

Combination ICIs

In conclusion

Inhibition of the PD-L1 / PD-1 axis shows a clear but limited benefit in head and neck cancer

TME and evasion mechanisms might be different from those in MM and NSCLC

Very preliminary data suggest that combination therapy may fulfil the gap, but we are at the beginning of the way

Combination therapy should take into account also the immune effect of conventional treatment i.e chemotherapy, radiotherapy and targeted therapy (not faced in the present talk due to time limitation)

Thank You!