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The promise of immuno-oncology

December 2017: 3042 trials 

Kaiser J. Science 2018; 359:1346-1347



Major issues in cancer immunotherapy

 Identify mechanisms of intrinsic resistance to 
checkpoint blockade
 Predictive biomarkers for response (genetic, 

immunological, metabolic, microbiome)

 Identify mechanisms of acquired resistance to 
checkpoint blockade
 Predictive biomarkers for relapse?

 Identify combination therapies with synergistic 
potential
 PD-1/PD-L1 and targeted agents (or other drugs)



For every complex problem, there Is 

an answer that is clear, simple, and wrong

H.L. Mencken



Predictive markers for immunotherapy in melanoma

Jessurun et al. Front Oncol, 2017, 7:233Axelrod et al. Semin Cancer Biol, 2017, S1044-579X(17)30121-9



Predictive markers for immunotherapy with anti-PD-1 

antibodies in melanoma

Publication Marker(s) Cohort size /p Value

Johnson DB et al., 

Cancer Immunol Res 2016, 4:959-967

Mutational load n=32/33; p=0.003/0.002

Hugo et al., 

Cell 2016, 165:35-44

IPRES signature n=28; p=0.04

Johnson DB et al., 

Nat Commun 2016, 7:10582

HLA-DR n=30/23; p=0.055/0.046

Diem et al.

Br J Cancer 2016, 114:256-261

LDH n=29; p<0.001 (ANOVA)

Charoentong et al., 

Cell Rep 2017, 18:248-262

162 immune genes n=28; p=0.025

Ayers et al., 

J Clin Invest 2017, 127:2930-2939

28 immune genes n=62; p=0.027



The hallmarks of successful immunotherapy

Galluzzi et al. Sci Transl Med, 2018, 10:eaat7807

Malignant cells

Systemic factorsTumor stroma and vasculature

Tumor infiltrate



Galon et al. Science, 2006, 313:1960-1964
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Immune contexture

Fridman et al. Nat Rev Cancer 2012, 15:298-306

Nature Reviews | Cancer
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cells are distributed in the tumour core, in 

contact with tumour cells or in the surround-

ing stroma. Mature dendritic cells concentrate 

in TLS, in close contact with naive T cells13. 

TLS may be sites in which tumour-controlling 

primary and/or secondary immune responses 

are generated.

The distribution of immune cells also 

varies between tumour types. All subsets of 

T cells are present at the core and at the inva-

sive margin of the tumour in colorectal can-

cer, non-small-cell lung cancer, melanoma, 

and head and neck cancers. In colorectal 

cancer, the proportion of tumours with high 

densities of CD4+ memory T cells and CD8+ 

memory T cells decreases with local tumour 

invasion, as assessed by the T stage of the 

TNM classification (that is, the density is 

lower in T4-stage tumours than in T1-stage 

tumours). Conversely, the proportion of pri-

mary tumours with high infiltrates of CD4+ 

memory T cells and CD8+ memory T cells, 

particularly in the core, is lower in patients 

with tumours that recur. It has also been 

reported that T cells are found only in the 

invasive margin in liver metastases of colon 

cancer14.

The fact that functional populations of 

immune cells are located in different areas 

of a tumour and that this varies between 

cancer types suggests that different immune 

cell populations may have different roles 

in tumour control. Moreover, the variable 

density and location of these immune cells 

between tumours in different individuals 

with the same cancer type prompted the 

investigation of whether the immune  

contexture might affect clinical outcome.

Clinical impact of the immune contexture

The effect on disease-free survival and 

overall survival. Correlations between 

the levels of immune cell infiltration of 

tumours and clinical outcome have been 

investigated in many cancers. TABLE 1 and 

FIG. 2 summarize the effect of T cells on 

clinical outcome from 124 published arti-

cles. A strong lymphocytic infiltration has 

been reported to be associated with good 

clinical outcome in many different tumour 

types, including melanoma, and head and 

neck, breast, bladder, urothelial, ovarian, 

colorectal, renal, prostatic and lung cancer. 

Therefore, high densities of CD3+ T cells, 

CD8+ cytotoxic T cells and CD45RO+ 

memory T cells were clearly associated with 

a longer disease-free survival (after surgical 

resection of the primary tumour) and/or 

overall survival (FIG. 2). The fact that the 

density of CD8+ T cells seems to correlate 

with poor prognosis in renal cell cancer, 

except when these T cells are proliferat-

ing15, is an intriguing result that deserves 

further analysis.

In contrast to the effects of cytotoxic 

T cells and memory T cells, analysis of the 

effect of CD4+ T cell populations on clinical 

outcome has resulted in apparent contradic-

tory results, and so their effects have been a 

matter of debate for the past decade. The case 

of T
Reg

 cells is a striking example of conflict-

ing data that lead to difficult interpretation. 

There are different subpopulations of T
Reg

 

cells (including, natural T
Reg

 cells, induced 

T
Reg

 cells and so on) but in most studies  

they are detected as a population of CD4+ 

T cells that express phenotypic markers  

such as high levels of CD25 (also known as 

interleukin-2 receptor subunit-α (IL-2Rα), 

which is a subunit of the receptor for  

the T cell-stimulating cytokine IL-2) and the 

transcription factor forkhead box protein P3 

(FOXP3). In fact, none of these markers is 

fully restricted to T
Reg

 cells; CD25 and FOXP3 

are also expressed by activated effector 

T cells, and there are also FOXP3– suppressor 

cells. Nevertheless, the pioneering report by 

Curiel et al.16, which demonstrated a cor-

relation of intratumoural T
Reg 

cells
 
and poor 

survival in ovarian cancer, was intuitively 

adopted as proving the deleterious effect 

of suppressor T cells on clinical outcome. 

Indeed, several reports support this concept, 

and the high infiltration of T
Reg 

cells has 

been correlated with poor overall survival 

in breast cancer17,18 and in hepatocellular 

Figure 1 | The immune contexture. a | Tumour anatomy showing the fea-

tures of the immune contexture, including the tumour core, the invasive 

margin, tertiary lymphoid structures (TLS) and the tumour microenviron-

ment. The distribution of different immune cells is also shown. b | Table 

depicting the parameters of the immune contexture that predict a good 

prognosis. CT, core of the tumour; CTL, cytotoxic T lymphocyte; DC,  

dendrit ic cell; FDC, follicular dendrit ic cell; IFNγ, interferon-γ; IL-12,  

interleukin-12; IM, invasive margin; IRF1, interferon regulatory factor 1; 

MDSC, myeloid-derived suppressor cell; NK cell, natural killer cell; T
H
,  

T helper; T
Reg
 cell, regulatory cell
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Additional obstacles

1. Epigenetic, genetic and immunologic heterogeneity; 
tumor evolution

• Multi-region sampling

• Multiple time points sampling

2. Cancer-cell extrinsic factors
• Metabolism

• Cellular senescence

3. Interactions between other treatment forms and immunotherapy
• Chemotherapy, radiotherapy

• Targeted therapy

4. Missing techniques to assay the entire complexity of TME
• RNA-seq

• Immunohistochemistry



Quantifying immune contexture using NGS and

imaging data

Immune

contexture

Functional

status

Type and densities of TILs

Hackl H et al. Nature Rev Genetics 2016; 17: 441-458



quanTIseq validation

Finotello et al., (bioRxiv 223180)

Melanoma

n=30

J. Balko

Vanderbilt University

Lung cancer

n=8

J. Balko

Vanderbilt University

CRC

n=8 

N. de Miranda

Leiden University



Immunogenic effects of BRAFi/MEKi in melanoma

Finotello et al., (bioRxiv 223180); Data from Song et al., Cancer Discovery 2017, 7:1248-1265 



Immunogenic effects of chemotherapy
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Major issues in cancer immunotherapy

 Identify mechanisms of intrinsic resistance to 
checkpoint blockade
 Predictive biomarkers for response (genetic, 

immunological, metabolic, microbiome)

 Identify mechanisms of acquired resistance to 
checkpoint blockade
 Predictive biomarkers for relapse?

 Identify combination therapies with synergistic 
potential
 PD-1/PD-L1 and targeted agents (or other drugs)



Immunoediting and tumor heterogeneity

Spranger S et al., Trends in Immunology 2016, 37: 349-351

neoantigen  expression,  highly clonal

tumors are more immunogenic  than their

more heterogeneous  counterparts.

To investigate whether immune responses

against  the assessed  neoantigens can also

be detected  in patients, the authors ana-

lyzed  two patients from their initially ana-

lyzed  patient  cohort  whose tumors

exhibited  similar mutational load  but  dra-

matically different  heterogeneity (8% and

74%). Following identification of potential

neoantigens expressed  throughout  the

tumor, the authors used  HLA binding-pre-

diction algorithms to predict  immunogenic

neoantigens. By doing so, one clonally

expressed  immunogenic  epitope in the

‘clonal’  tumor and  two immunogenic

epitopes in the ‘heterogeneous’  tumor

were identified. Neoantigen-specific  T cells

could  be detected  by multimer-staining

approaches in each patient. These T cells

exhibited  features associated  with an anti-

gen-experienced, dysfunctional pheno-

type, including PD-1  and  Lag-3 expression.

Based  on these observations, tumor sam-

ples from lung cancer patients treated  with

anti-PD-1 and  melanoma patients treated

with anti-CTLA-4 were analyzed  for a cor-

relation between neoantigen heterogeneity

and  response to checkpoint  blockade ther-

apy. Analysis of the lung cancer/anti-PD-1

cohort  revealed  a strong correlation

between clonal expression of neoantigens

in tumors with high mutational burden and

response to checkpoint  blockade indicated

by increased  progression-free survival. A

similar correlation could  be drawn from

the melanoma/anti-CTLA-4 cohort, sup-

porting the notion that  clonal neoantigen

expression combined  with high mutational

burden might  be a potent  predictive factor

for response to  checkpoint  blockade.

The study by McGranahan  et  al. provides

new  insights  into  how  the somatic  muta-

tion-derived  neoantigen  landscape could

influence the local antitumor  immune

response [4]. Their work  also  raises many

more questions.  For instance,  high clon-

ality of neoantigen  expression  is not  pre-

dictive of overall survival for squamous  cell

cancer.  The authors  speculate that  overall

reduction  in class I HLA expression  might

limit  the effect  of an immune response on

the tumor,  but  there are likely to  be addi-

tional mechanisms  at  play,  particularly

since responses  are being  observed  after

checkpoint  blockade in squamous  cell

carcinoma [6]. Furthermore,  what  is the

role of immune selection  in determining

heterogeneity  in neoantigen  expression?

CD8 T cells
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Low intra-tumor heterogeneity
Increased response towards checkpoint blockade

High intra-tumor heterogeneity
No response towards checkpoint blockade

No 
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An -tumor 
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Figure 1. Contrasting  Developmental and  Immune-Mediated  Generation  of Clonal and  Heterogeneous Tumors.  Blue boxes  symbolize that  clonal (all red)

and  heterogeneous  (confetti color) tumors develop  independently through different  processes  and  the degree of intratumor  heterogeneity is inherited  within one given

tumor. Red  box symbolizes  a potentially  occurring  immune selection  process in which a heterogeneous  tumor could  either become clonal,  in the presence of a T cell

infiltrate,  or remain unselected  if T cell infiltration is prevented.

350 Trends  in Immunology,  June  2016,  Vol.  37,  No. 6



Targeting the PD-1/PD-L1 pathway broadens the T cell repertoire 

and renders the tumors more homogeneous
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Acquired resistance to PD-1 blockade in melanoma

Efremova et al., Nat Commun, 9:32, 2018, Data from Zaretsky et al., New Engl J Med 2016; 375:819-829



Adaptive therapy in metastatic prostate cancer

using patient-specific evolutionary dynamics

Zhang et al., Nat Commun 2017, 8:1816

Development of treatment algorithms for cancer immunotherapy:

• Monitoring tumor evolution (liquid biopsies, radiomics, TCR 

repertoire)

• Evolutionary dynamic models of immunoediting



Major issues in cancer immunotherapy

 Identify mechanisms of intrinsic resistance to 
checkpoint blockade
 Predictive biomarkers for response (genetic, 

immunological, metabolic, microbiome)
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 Identify combination therapies with synergistic 
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Cancer immunotherapy

December 2017: 3042 trials 

Kaiser J. Science 2018; 359:1346-1347



Enabling precision immuno-oncology?

 Mutational and neoantigen landscapes are highly individual
 Colorectal cancer (Angelova et al., Genome Biology, 2015, 16:64)

 Solid cancers (Charoentong et al., Cell Rep, 2017, 18:248-262)

 Oncogenic signaling is cell context-specific
 BRAF mutant CRC is resistant to BRAF inhibitors 

(Prahalad et al., Nature 2012, 483:100-103)

 Tumor evolution and immune responses are  dynamic and 
interwoven systems
 In general molecular data only from single time points is available

 Mouse models are not suitable for testing precision immuno-
oncology
 Patient-derived xenografts (PDX) mouse models are 

immunocompromised

 Current humanized mouse models cannot mimic the entiry complexity 
of the tumor microenvironment



Prediction of dynamic systems

Weather forecasting



Eduati et al. Cancer Res 2017, 77:3364-3375

Perturbation biology



Huch M, Koo B-K, Development 2015; 142:3113-3125 

Clevers H. Cell, 2016; 165:1586-1597

In vitro models: Organoids



Hybrid avatars using in vitro and in silico models

Perturbation biology to derive mechanistic rationale



Hybrid avatars using in vitro and in silico models

Perturbation biology to derive mechanistic rationale

Collaboration with H. Farin, F. Greten, University of Fankfurt;

S. Scheidl, D. Öfner-Velano, G. Gastl, H. Zwierzina, L. Huber, S. Gelley, Medical University Innsbruck 

Control 

Knockout #1 
(PCTK1) 

Knockout #2 
(CCNY) 

 

Organoids with a rounded shape and a regular boundary are the ones which are infected and survived after selection with the antibiotic 
(puromycin). An irregular shape  without a clear boundary represents the dying organoids . 

CRISPR-cas9 mediated gene knockout in CRC tumor organoids using a lentiviral vector 

Experiments: G. Lamberti, A. Noureen



Summary

 Identification of predictive biomarkers for response 
to immune checkpoint blockade: 
 Novel comprehensive assays/assay combinations are 

required

 Identification of predictive biomarkers for relapse: 
 Non-invasive assays for tumor monitoring are 

required

 Enabling precision immuno-oncology: 
 Need for avatars and perturbation data
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