Enabling precision immuno-oncology

Zlatko Trajanoski Biocenter, Division for Bioinformatics Medical University of Innsbruck Innrain 80, 6020 Innsbruck, Austria Email: <u>zlatko.trajanoski@i-med.ac.at</u> http://icbi.at

The promise of immuno-oncology

Combination trials with PD-1/PD-L1 inhibitors

December 2017: 3042 trials

Kaiser J. Science 2018; 359:1346-1347

Major issues in cancer immunotherapy

- Identify mechanisms of intrinsic resistance to checkpoint blockade
 - Predictive biomarkers for response (genetic, immunological, metabolic, microbiome)
- Identify mechanisms of acquired resistance to checkpoint blockade
 - Predictive biomarkers for relapse?
- Identify combination therapies with synergistic potential
 - PD-1/PD-L1 and targeted agents (or other drugs)

For every complex problem, there Is an answer that is clear, simple, and wrong

H.L. Mencken

Predictive markers for immunotherapy in melanoma

Implication of potential biomarkers in response to immunotherapy.

Biomarker	Checkpoint(s)/Therapies	Effect on response
Molecular		<u>.</u>
NPAS mutations		Docitivo
NF1 mutations		Positive
$CD8 \pm T$ cells at tumor margin		Positive
DC infiltration	T cell transfer therapy	Positive
PD 1 expression		Positive
CTLA 4 expression		Positivo
DD L1 expression	CTLA-4	Positive
WNT/θ extension extinction	CTLA-4, PD-1, PD-L1	Nogativo
DTEN loss		Negative
Mutational burden /		Dogitivo
neoantigens	CILA-4, PD-1, PD-LI	POSITIVE
SERPIN family mutations	CTLA-4	Positive
IPRES transcriptional	PD-1	Negative
signature		-
GNAQ/GNA11 mutations	CTLA-4, PD-1	Negative
MHC I/II expression	PD-1, PD-L1	Positive
JAK1/2 loss	PD-1	Negative
Clonal TCR repertoire	PD-1	Positive
Cytotoxic response	CTLA-4	Positive
IFN-γ response	CTLA-4, PD-L1	Positive
Peripheral Blood		
Elevated LDH	CTLA-4, PD-1	Negative
Low MDSCs	CTLA-4	Positive
Angiopoietin-2	CTLA-4	Negative
sPD-L1	CTLA-4, PD-1	Mixed
Circulating tumor DNA	PD-1	Negative
Clinical		
irAEs	CTLA-4, PD-1, PD-L1	Positive
Prior treatment	PD-1	Negative
Visceral involvement/tumor	PD-1	Negative
Dulk	DD 1	D
microbiome	PD-1	Positive
Uveal subtype	PD-1, PD-L1	Negative

Axelrod et al. Semin Cancer Biol, 2017, S1044-579X(17)30121-9

Predictive markers for immunotherapy with anti-PD-1 antibodies in melanoma

Publication	Marker(s)	Cohort size /p Value
Johnson DB <i>et al</i> ., <i>Cancer Immunol Res</i> 2016, 4:959-967	Mutational load	n=32/33; p=0.003/0.002
Hugo <i>et al.</i> , <i>Cell</i> 2016, 165:35-44	IPRES signature	n=28; p=0.04
Johnson DB <i>et al.</i> , <i>Nat Commun</i> 2016, 7:10582	HLA-DR	n=30/23; p=0.055/0.046
Diem <i>et al</i> . <i>Br J Cancer</i> 2016, 114:256-261	LDH	n=29; p<0.001 (ANOVA)
Charoentong <i>et al</i> ., <i>Cell Rep</i> 2017, 18:248-262	162 immune genes	n=28; p=0.025
Ayers <i>et al.</i> , <i>J Clin Invest</i> 2017, 127:2930-2939	28 immune genes	n=62; p=0.027

The hallmarks of successful immunotherapy

Galluzzi et al. Sci Transl Med, 2018, 10:eaat7807

Immunoscore: prognostic biomarker for tumor recurrence in colorectal cancer

International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study

Franck Pagès, Bernhard Mlecnik, Florence Marliot, Gabriela Bindea, Fang-Shu Ou, Carlo Bifulco, Alessandro Lugli, Inti Zlobec, Tilman T Rau, Martin D Berger, Iris D Nagtegaal, Elisa Vink-Börger, Arndt Hartmann, Carol Geppert, Julie Kolwelter, Susanne Merkel, Robert Grützmann, Marc Van den Eynde, Anne Jouret-Mourin, Alex Kartheuser, Daniel Léonard, Christophe Remue, Julia Y Wang, Prashant Bavi, Michael H A Roehrl, Pamela S Othashi, Linh T Nguyen, SeongJun Han, Heather L MacGregor, Sara Hafezi-Bakhtiari, Bradly G Wouters, Giuseppe V Masucci, Emilia K Andersson, Eva Zavadova, Michal Vocka, Jan Spacek, Lubos Petruzelka, Bohuslav Konopasek, Pavel Dundr, Helena Skalova, Kristyna Nemejcova, Gerardo Botti, Fabiana Tatangelo, Paolo Delrio, Gennaro Clilberto, Michele Maio, Luigi Laghi, Fabio Grizzi, Tessa Fredriksen, Bénédicte Buttard, Mihaela Angelova, Angela Vasaturo, Pauline Maby, Sarah E Church, Helen K Angell, Lucie Lafontaine, Daniela Bruni, Carine El Sissy, Nacilla Haicheur, Amos Kirilovsky, Anne Berger, Christine Lagorce, Jeffrey P Meyers, Christopher Paustian, Zipei Feng, Carmen Ballesteros-Merino, Jeroen Dijkstra, Carlijn van de Water, Shannon van Lent-van Vliet, Nikki Knijn, Ana-Maria Muşinā, Dragos-Viorel Scripariu, Boryana Popivanova, Mingli Xu, Tomonobu Fujita, Shoichi Hazama, Nobuaki Suzuki, Hiroaki Nagano, Kiyotaka Okuno, Toshihiko Torigoe, Noriyuki Sato, Tomohisa Furuhata, Ichiro Takemasa, Kyogo Itoh, Prabhu S Patel, Hemangini H Vora, Birva Shah, Jayendrakumar B Patel, Kruti N Rajvik, Shashank J Pandya, Shilin N Shukla, Yili Wang, Guanjun Zhang, Yutaka Kawakami, Francesco M Marincola, Paolo A Ascierto, Daniel] Sarqent*, Bernard A Fox, Jérôme Galon

Lancet 2018; 391: 2128-39

Galon et al. Science, 2006, 313:1960-1964

Immune contexture

Additional obstacles

- 1. Epigenetic, genetic and immunologic heterogeneity; tumor evolution
 - Multi-region sampling
 - Multiple time points sampling
- 2. Cancer-cell extrinsic factors
 - Metabolism
 - Cellular senescence
- 3. Interactions between other treatment forms and immunotherapy
 - Chemotherapy, radiotherapy
 - Targeted therapy
- 4. Missing techniques to assay the entire complexity of TME
 - RNA-seq
 - Immunohistochemistry

Quantifying immune contexture using NGS and imaging data

Hackl H et al. Nature Rev Genetics 2016; 17: 441-458

quanTIseq validation

Melanoma n=30 J. Balko Vanderbilt University

Lung cancer n=8 J. Balko Vanderbilt University

CRC n=8 N. de Miranda

Leiden University

Immunogenic effects of BRAFi/MEKi in melanoma

Finotello et al., (bioRxiv 223180); Data from Song et al., Cancer Discovery 2017, 7:1248-1265

Immunogenic effects of chemotherapy

A. Krogsdam, F. Finotello (unpublished)

Medical University Innsbruck

Major issues in cancer immunotherapy

- Identify mechanisms of intrinsic resistance to checkpoint blockade
 - Predictive biomarkers for response (genetic, immunological, metabolic, microbiome)
- Identify mechanisms of acquired resistance to checkpoint blockade
 - Predictive biomarkers for relapse?
- Identify combination therapies with synergistic potential
 - PD-1/PD-L1 and targeted agents (or other drugs)

Immunoediting and tumor heterogeneity

Spranger S et al., Trends in Immunology 2016, 37: 349-351

Targeting the PD-1/PD-L1 pathway broadens the T cell repertoire and renders the tumors more homogeneous

Efremova et al., Nat Commun, 9:32, 2018

Acquired resistance to PD-1 blockade in melanoma

Efremova et al., Nat Commun, 9:32, 2018, Data from Zaretsky et al., New Engl J Med 2016; 375:819-829

Adaptive therapy in metastatic prostate cancer using patient-specific evolutionary dynamics

Development of treatment algorithms for cancer immunotherapy:

- Monitoring tumor evolution (liquid biopsies, radiomics, TCR repertoire)
- Evolutionary dynamic models of immunoediting

Zhang et al., Nat Commun 2017, 8:1816

Major issues in cancer immunotherapy

- Identify mechanisms of intrinsic resistance to checkpoint blockade
 - Predictive biomarkers for response (genetic, immunological, metabolic, microbiome)
- Identify mechanisms of acquired resistance to checkpoint blockade
 - Predictive biomarkers for relapse?
- Identify combination therapies with synergistic potential
 - PD-1/PD-L1 and targeted agents (or other drugs)

Cancer immunotherapy

Kaiser J. Science 2018; 359:1346-1347

Enabling precision immuno-oncology?

- Mutational and neoantigen landscapes are highly individual
 - Colorectal cancer (Angelova *et al.*, *Genome Biology*, 2015, 16:64)
 - Solid cancers (Charoentong *et al.*, *Cell Rep*, 2017, 18:248-262)
- Oncogenic signaling is cell context-specific
 - BRAF mutant CRC is resistant to BRAF inhibitors (Prahalad *et al.*, *Nature* 2012, 483:100-103)
- Tumor evolution and immune responses are dynamic and interwoven systems
 - In general molecular data only from single time points is available
- Mouse models are not suitable for testing precision immunooncology
 - Patient-derived xenografts (PDX) mouse models are immunocompromised
 - Current humanized mouse models cannot mimic the entiry complexity of the tumor microenvironment

Prediction of dynamic systems

Weather forecasting

Perturbation biology

In vitro models: Organoids

Hybrid avatars using in vitro and in silico models

Perturbation biology to derive mechanistic rationale

Hybrid avatars using in vitro and in silico models

Collaboration with H. Farin, F. Greten, University of Fankfurt;

S. Scheidl, D. Öfner-Velano, G. Gastl, H. Zwierzina, L. Huber, S. Gelley, Medical University Innsbruck

Experiments: G. Lamberti, A. Noureen

Summary

- Identification of predictive biomarkers for response to immune checkpoint blockade:
 - Novel comprehensive assays/assay combinations are required
- Identification of predictive biomarkers for relapse:
 - Non-invasive assays for tumor monitoring are required
- Enabling precision immuno-oncology:
 - Need for avatars and perturbation data

Enabling precision immuno-oncology

Grossvenediger 3666 m

Stilfser Joch

Zlatko Trajanoski Division for Bioinformatics, Medical University of Innsbruck, Austria Email: <u>zlatko.trajanoski@i-med.ac.at</u> http://icbi.at

European Research Council Established by the European Commission