Challenges of Biomarker Development

(in Europe)
Disclaimer

• I work for industry (diagnostics)
• We have worked with over 30 biopharma companies in the arena of biomarkers
• The presentation is my own and does not necessarily reflect the views of Biodesix nor those of our partners
• My biases come from working in oncology, particularly lung cancer
Biomarkers in general

• Lots of them
 – a naturally occurring molecule, gene, or characteristic by which a particular pathological or physiological process, disease, etc. can be identified

• But what we are interested in are those that can be used in clinical practice...which I will call ‘tests’

• Why do we need clinically useful tests?
 – Giving the right therapy to the right patient
 • Maximizing outcomes, minimizing side effects and suffering
Global Oncology Costs - Financial Toxicity

Costs are increasing faster than the growth of our economies

Source: Global Oncology Trends Report 2017 (QuintilesIMS)
Diagnostic/Biomarker Trends

• Targeted therapies are giving way to the next wave of treatments: immunotherapy
 – Where there are many biological factors to consider
• Liquid biopsy is gaining traction
• Available tools
 – Better & better; still dominated by sequencing
 • But the approaches are diversifying
• Significant investment in ‘screening’ and ‘wellness’
 – Large markets attract large amounts of risk capital
 – Though not particularly in Europe
• Movement towards multivariate versus univariate
 – Which increases the complexity of the development process
• Machine learning / AI is finally coming to biomarker development
 – Though there is resistance to the ‘black box’
General Challenges

• Discovery
 – Tools and reagents are expensive
 – Samples & data
 • As you tease out more complex biology you naturally need larger sample sets in order to effectively stratify
 • Sample curation is not uniform, particularly for post-hoc analysis
 • Well curated data is always a challenge
 • Having a biomarker strategy ‘early’ is not always an option
 – Managing variability / reproducibility
 • Batch effects; variable readouts; test variability; clinical annotation
General Challenges

• Development
 – Can be difficult to move from discovery to a logistically viable test
 – Regulatory requirements can be demanding
• Commercialization
 – Validation
 • Costs are high
 – Reimbursement
 • Very difficult
 – Market Penetration
 • Relatively slow, complex, and expensive
 – Competition, in many cases, can ride on the back of other’s validation work
Challenges by Sector

- Many constituencies are involved in developing tests
 - each providing a unique benefit (or having a role to play)
 - each providing their own bias / challenge
Biomarker Constituencies

• Academics/researchers (purpose/biases)
 – Understanding biology in general to improve the understanding of disease etiology and progression
 – Biases / Challenges
 • Start from a biological hypothesis; known markers of relevance
 • Biased by the tool-set and approach they currently use
 • Herd effects
 – Counter trends:
 • Increasing amounts of biological data are leading to the use of machine (unsupervised/semi-supervised) learning
Biomarker Constituencies

• Biopharma/industry
 • Major force in driving the development of biomarkers
 • Facilitating the understanding of drug MOA & patient interactions
 • Bias towards the largest applicable population
 • Biased by the “in-place” infrastructure that enables testing
 – Novel / proprietary is the enemy of rapid adoption
 • Don’t like black box (machine learning) solutions
 – Introduces risk at the regulators and for adoption
 • Very careful control over clinical samples / data
Biomarker Constituencies

• Clinicians
 • Prognostic, predictive and monitoring tools
 – Informing prognosis, guiding treatment; monitoring resistance; dosing
 • Bias
 – Bias to treat
 » “well tolerated”
 – Resistance to novel approaches
 » Bias as to presumed causation (they are experts)
 » Simply don’t believe black boxes; particularly ones developed independently of biopharma
Biomarker Constituencies

• Payers / Society
 • Containing costs (overall) and improving health
 • Inherent bias against paying
 – Use of institutional barriers hinders novel tests
 • Naturally risk averse
 • Historically diagnostics is a cost+ business
 – Very significant resistance from pretty much all constituencies to change this....
Biomarker Constituencies

- Patients
 - Ultimately the main beneficiaries of precision medicine
 - But often lack a voice
 - Patient advocacy is not well developed in Europe
 - Patient pay is rising
 - Genetic profiling (risk assessment, prenatal screening)
 - Wellness & monitoring
 - In certain geographies
Biomarker Constituencies

• Diagnostic Industry
 – Dominated by ‘logistics’ companies
 • Commodity business driven by margin considerations...not research (akin to generics)
 – Discovery industry is small
 • Miniscule funding compared to drugs
 • VC’s stay away because the path to commercialization is so difficult
 – Even when you can demonstrate proof of principle
 • But this is where innovation can happen
Global Costs for Cancer Drugs vs. Molecular Diagnostics

Source: Combined (and calculated) data from Seo 2018 and Quintiles Global Oncology Trends (2017)
Discovery/Development is more important than ever

- It takes substantial focus and resources to create truly useful tests, particularly multivariate tests
 - So the focus is often on the largest markets given the constraints on pricing and reimbursement
 - But that may not be where the most value is
- We need champions focused on specific unmet needs
Finally: Benefits of Europe

• Access to samples
 – Better rules and willingness to work with companies
 • Often keep control of samples from pharma studies
 • Can more easily share their own samples
 – Current regulatory hurdles are lower
 • But this may be changing
Drawbacks of Europe

• From Bench top to bedside?
 – Getting reimbursed is very hard...
 • Fragmented markets
 • Major resistance to value-based pricing
 – Locals dominate access and testing
 • And typically only want to add commodity products to their menus
 • Pharma wants companion diagnostics that are widely available
Opportunities

• Lower the costs
 • For discovery, validation
 • Broader support for funded clinical studies
 – Competition from pharma; reduce reliance on pharma $$s
 – More pressure on pharma to share samples/data
 • Unified approvals with broad support for reimbursement across geographies

• Improve the pricing for clinically useful and cost-effective products
 – Reward risk and innovation when successful
Summary

• The tools we have for probing biology are rapidly improving and provide fantastic promise
 – Improve patient outcomes; manage costs & toxicities

• *Useful* biomarkers are getting more complex (and better) and are more needed than ever

• But the hurdles from discovery through to delivery to the clinic are very high

• You need dedicated champions to make it happen
 – and they need mechanisms of support to overcome the hurdles