Clinical and statistical considerations of bridging approaches to alternative dosing regimen or formulations

Dominik Heinzmann, PhD
Global Development Team Leader
Biostatistics Manager
F. Hoffmann-La Roche, Basel
Disclaimer

- D. Heinzmann is an employee of F. Hoffmann-La Roche Ltd.
- The views expressed in this presentation are those of the speaker and not necessarily those of F. Hoffmann-La Roche Ltd.
Table of Contents

- PK bridging approaches for dosing frequency
- PK bridging approaches for change in route of administration
Change in dosing schedule

Situation

- Fixed dose 100mg for indications A and B every 4 weeks (Q4W) as infusion, monotherapy
- One wants to explore a Q2W and Q6W dosing schedule
- Available data
 - Dose finding study (DF) exploring various body weight adjusted and fixed dosing for Q4W in indication A
 - Other Phase Ib, II and III studies in both indications A and B
Part A: Population PK (popPK) model

• **Questions to address:**
 – Linear pharmacokinetics (within data available)?
 – Disposition (compartment models) and elimination (x-order)
 – Covariates that are statistically significantly related to drug’s PK in popPK model (e.g. body weight, tumor burden, gender…)

 • Assess impact on exposure (relevant for interpolation / extrapolation to alternative schedules)

• **Model set-up (in short)**

"Usual" PK Studies
Dense sampling, N small

Population PK Studies
Sparse data, N large

The population, rather than the individual, is considered as a unit of analysis for estimating distribution of each parameter.
Part A: Population PK (popPK) model

Example

• Use fitted popPK model to simulate / predict hypothetical doses / schedules
• Key benchmarks are Cycle 1 and steady state exposure
• For the example drug, assume Ctrough drives efficacy, Cmax safety

<table>
<thead>
<tr>
<th>Regime</th>
<th>Cmax (ug/mL)</th>
<th>Ctrough (ug/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cycle 1</td>
<td>Steady state</td>
</tr>
<tr>
<td>100mg Q4W</td>
<td>33</td>
<td>50</td>
</tr>
<tr>
<td>55mg* Q2W</td>
<td>18</td>
<td>34</td>
</tr>
<tr>
<td>165mg* Q6W</td>
<td>55</td>
<td>62</td>
</tr>
</tbody>
</table>

*Dose determined using target exposure (often Ctrough) established based on non-clinical studies

To ensure “at least” target exposure
Part B: Exposure-response (ER) model

- Questions to address
 - Impact of exposure (AUC, Cmax, Cmin) on efficacy and safety
 - Assess patient characteristics with respect to prognostic & predictive impact on endpoints

- Example

Percent change from baseline in first RECIST measurement versus vemurafenib exposure (Zhang, Heinzmann, Grippo, Clin Pharmacokinet 2017)
How much evidence needed?

• Assume Package = PopPK model plus substantial evidence on approved dose plus some sparse data on other doses.

• Sufficient? – Efficacy considerations
 – Maybe if no exposure-response relationship found for efficacy and safety within range one wants to extend dosing
 – Exposure achieved by approved dosing regime is in the flat or plateau part of the exposure-response curve
 – No impact on efficacy outcome expected as long as new dosing regimen achieved exposure greater than target concentration and within range of approved dose regime

• Sufficient? – Safety considerations
 – Cmax (AUC) – safety relationship (ER): No trend? Can one exclude increase in safety risk by higher Cmax with Q6W?
 – “Sparse data”: Is highest Cmax observed in some Phase I / II / III data (although likely only limited N)?
Table of Contents

PK bridging approaches for dosing frequency

PK bridging approaches for change in route of administration
Rationale for considering subcutaneous instead of IV administration

Clinical activity
- Potential to provide comparable efficacy, pharmacokinetics and safety with subcutaneous administration, demonstrated in several clinical trials with other agents
 - Bortezomib subcutaneous\(^1,2\)
 - Alemtuzumab subcutaneous\(^3,4\)

Patient needs
- Potential for greater patient preference and satisfaction, and reduced treatment burden with subcutaneous administration
 - Denosumab subcutaneous\(^5,6\)

Healthcare professional needs
- Potential to optimise medical resource utilisation
 - Reduced administration time
 - No requirement for dedicated infusion suites/staff
 - No need for infusion bag preparation

Herceptin SC development program

- **2010**
 - Robust evidence of clinical activity (efficacy, safety and PK)
 - Phase I CP2
 - Phase III HannaH

- **2011**
 - EMA Herceptin SC approval

- **2012**
 - CP2: Dose-finding/dose confirmation/fixed dose
 - HannaH: Comparability between Herceptin SC vial and IV

- **2013**
 - PrefHer (cross-over design)
 - Phase II PrefHer (cross-over design)
 - Preference study
 - Switching study
 - SafeHer – Safety study
 - Phase III SafeHer – Safety study
 - Safety Study

- **2014**

Patient preference and satisfaction
Healthcare professional preference and satisfaction
Medical resource utilisation
Phase I: popPK model to determine Herceptin SC dose

(1.) C_{min} at least as high
(2.) Comparable AUC
(3.) Dose such that no loading dose required

Quartino et al, 2015, Cancer Chemother Pharmacol
Phase III: Optimal population and endpoint

• Guiding principle: Sensitivity
 – The idea is to study Herceptin SC in the population of patients with an endpoint such that *if there is a difference between Herceptin SC and Herceptin IV* – that difference will most likely be detected

• Extensive analyses show that this is satisfied by:
 – **Population:** Neoadjuvant
 – **Endpoint:** pathologic Complete Response (pCR)

 – **REF:** Jackisch, Scappaticci, Heinzmann et al 2015, Future Oncol. « Neoadjuvant breast cancer treatment as a sensitive setting for trastuzumab biosimilar development and extrapolation»
HannaH: Phase III, non-inferiority trial

Co-primary endpoints

PK: Observed C_{trough} at pre-dose cycle 8 (non-inferiority)

pCR: Pathological complete response in the breast (non-inferiority)
HannaH: Phase III, non-inferiority trial

PK hypotheses confirmed by non-inferior efficacy

Objective (1.)
C_{min} at least as high

Objective (2.)
Comparable AUC
prefHER study: Patient preference, Time and motion

Vial cohort

HER2-positive EBC (N=200)

R

1:1

SC vial every 3 weeks x 4

Intravenous every 3 weeks x 4

Herceptin

Intravenous cycles to complete 18 cycles in total

SC vial every 3 weeks x 4

Remaining Herceptin cycles to complete 18 cycles in total

• Primary objective: Assess patients' preference for Herceptin subcutaneous vs intravenous administration in patients with HER2-positive early breast cancer
• Secondary objectives: HCP satisfaction, safety, efficacy and immunogenicity
Alternative designs?

- Done: Comparative trial IV vs SC (non-inferiority)
- Alternative: 3 arm design with testing superiority of IV and SC versus SoC

Scenario *

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Alpha</th>
<th>Sample size (events/pts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-inferiority</td>
<td>2.5% one-sides</td>
<td>~631 / 814</td>
</tr>
<tr>
<td>Superiority</td>
<td>2.5% two-sided for both tests</td>
<td>~338 / 446 (three arms)</td>
</tr>
</tbody>
</table>

Assuming TTE endpoint, median TTE in SoC arm 8 mo, target median in experimental 12 mo with 80% power, non-inferiority margin HR=1.25, target HR for superiority 0.67, accrual 22 mo, similar event/patient ratio and trial duration
Summary

• Dose schedule changes
 – M&S sufficient?
 – If data on alternative dosing schedules needed, how much data?

• Changes of administration route
 – Same active substance, similar efficacy and safety
 – What type of Phase III needed (non-inferiority, or alternative a three arm superiority trial)?

• Open item: Switching
 – What data needed to support switch between dose schedules & formulations?
 – If switching study is needed, what endpoints to look at?
Doing now what patients need next